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a b s t r a c t

Multi-view clustering has been widely developed to improve the clustering performance over that of
single-view clustering. However, the types of errors vary and behave inconsistently in each view, which
results in performance degradation in real applications. To address this limitation, in this paper, we
propose a novel Markov chain-based spectral clustering method for multi-view clustering to handle
different types of errors. Unlike most of the existing self-representation-based subspace clustering
methods, which process each view separately, ignoring complementary information among views, our
method first computes the transition probability matrices of all views, then forms each transition
probability matrix as a frontal slice of a third-order tensor to capture the multi-view information,
and finally decomposes the tensor into an ideal tensor with the tensor nuclear norm constraint and
an error term. Furthermore, the proposed method imposes the group l1 and l2,1 norms on the error
matrix for error learning such that various errors can be clearly characterized and processed to improve
performance. To solve the challenging optimization model, we propose an efficient algorithm using the
augmented Lagrangian multiplier method. Experimental results on three real-world datasets show that
the proposed method is superior to the state-of-the art methods in various evaluation metrics.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Multi-view clustering has attracted great research interest in
arious areas, such as face clustering [1,2], human action recogni-
ion [3], image representation [4], and image co-segmentation [5].
ompared with single-view clustering, multi-view clustering can
se relevant information from multiple views to divide the data
nto different clusters, so that the data within the same cluster
re more likely to be similar to each other than those in other
lusters. Considering that the feature data exist in several sub-
paces, multiple methods based on subspace clustering have been
roposed, such as sparse subspace clustering (SSC) [6] and low-
ank representation (LRR) [7], which use the self-representation
atrix to perform clustering. However, the above methods only
onsider single-view information.
To handle the multi-view clustering task, the works in [4,

,9] extended the single-view self-representation methods SSC
nd LRR into a multi-view setting. [8] represented multi-view
ata using the shared low-rank representation and a specific
esidual representation. The work in [9] used the sparse and

∗ Corresponding author at: Institute of Information Science, Beijing Jiaotong
niversity, Beijing 100044, China.

E-mail address: ygcen@bjtu.edu.cn (Y. Cen).
ttps://doi.org/10.1016/j.knosys.2021.106745
950-7051/© 2021 Elsevier B.V. All rights reserved.
low-rank decomposition [10] of each view to form a common
representation. [4] introduced a manifold constraint on the basis
of low-rank subspace clustering to preserve the local geometri-
cal structure of multiple features. Another effective multi-view
extended method is feature concatenation multi-view subspace
clustering [11], which uses low-rank representation to explore
the consensus information of multi-view data. However, in real
applications, the above matrix optimization-based methods have
one common limitation, i.e., the high-order correlations among
different views may not be fully used [12–14]. The reason is that
all views are processed independently or concatenated as one
vector [11].

To explore the high-order correlations among different views,
tensor learning-based methods have been developed. Low-rank
tensor constrained multi-view subspace clustering (LT-MSC) [15]
was proposed to construct a third-order representation tensor to
explore high-order correlations, fully preserving the spatial struc-
ture of the data. Xie et al. [16] introduced a new tensor decom-
position scheme to ensure consistency between multiple views.
However, the above tensor methods [12,15] may encounter high
computational complexity. To address this, Wu et al. [13] de-
veloped an essential tensor learning method (ETLMSC) by ex-
tending robust multi-view spectral clustering (RMSC) [17]. Differ-

ent from [12,15], which impose the low-rank constraint on the

https://doi.org/10.1016/j.knosys.2021.106745
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epresentation tensor, RMSC and ETLMSC assume the transition
robability matrix or tensor to be low-rank, respectively. To elim-
nate the influence of errors, error robust multi-view clustering
EMVC) [18] was proposed to learn the shared transition prob-
bility matrix. Although the above tensor-based methods have
chieved promising clustering results, when multi-view features
re contaminated by various noise, the data points belonging to
he same cluster may be misclassified. The reason is that LT-MSC,
TLMSC and [12] process the error of each view independently,
hich may cause the magnitude values of the error matrix to be

nconsistent.
Inspired by the advantages of the recently proposed tensor-

earning methods [12,13,15,19] and robust handling of various
rrors in multi-view data, we propose the error-robust low-rank
ensor approximation model (ELRTA) for multi-view clustering,
hich constructs the probability transition matrices of all views

nto a third-order tensor. In addition, we decompose it into a
oise-free tensor and an error term. The group l1 and l2,1 [20]
orms are imposed on the error term to handle various types
f errors. Furthermore, ELRTA vectorizes the error matrix of each
iew along its columns to make the magnitude values of the error
atrix consistent. Fig. 1 shows the flowchart of the proposed
LRTA model. Given multi-view features X (1), . . . , X (M), ELRTA
irst establishes the similarity matrix S(i) of each view. Then,
LRTA calculates the view-specific transition probability matrix
(i) via P (i)

= (D(i))−1S(i) and constructs the transition probability
ensor P by stacking the transition probability matrix of each
iew together. Finally, ELRTA decomposes P as the sum of Z
nd E , where Z is the noise-free transition probability tensor and
is the error tensor. Z is rotated to Z̃ , which is imposed by

ensor nuclear norm constraint based on tensor singular value
ecomposition (t-SVD). For E , the group l1 and l2,1 norms are
pplied to eliminate various types of errors. Our contributions can
e summarized as follows:

• We propose a novel multi-view clustering method that in-
corporates the tensor learning technique and the error ro-
bustness into a unified model, which is named error-robust
low-rank tensor approximation (ELRTA).

• Instead of learning each view independently, ELRTA enforces
nuclear norm constraint on tensor constructed by the transi-
tion probability matrices of multiple views. The constructed
tensor is decomposed into a noise-free tensor and an error
term, which are measured by the tensor nuclear norm and
the group l1 and l2,1 norms, respectively.

• An effective optimization algorithm is proposed to solve
the ELRTA model. Experimental results on three real-world
datasets show that the proposed ELRTA is superior to several
state-of-the-art methods.

he remainder of this paper is organized as follows. The related
orks for multi-view clustering are summarized in Section 2.
ome preliminaries are shown in Section 3. Section 4 presents
he proposed ELRTA model and designs an effective algorithm to
olve the ELRTA model. Section 5 reports the results of extensive
xperiments and model analysis. The conclusion of this paper is
ummarized in Section 6.

. Related work

Recent multi-view clustering methods are briefly reviewed in
his section. They can be roughly classified into three categories.

Matrix factorization based methods: The main idea of these
atrix factorization-based methods is that they decomposed
ulti-view data into a common representation by minimizing

he overall loss terms of different views. Liu et al. [21] em-
loyed appropriate consensus coefficient matrices to balance all
 S

2

oefficient matrices on the basis of decomposing the original
atrix. To maintain the local structures of multiple features,
ang et al. [22] proposed a multi-view conceptual clustering
ethod, which provides a universal consensus representation

or multiple views based on concept decomposition with lo-
al manifold regularization. Huang et al. [23] proposed a deep
ulti-view clustering model utilizing a collaborative deep matrix
ecomposition framework.
Graph-based methods: The main idea of graph-based meth-

ds is that they first construct the similarity matrices of all
iews from the original features and then fuse them into one
raph to reveal the essential correlation among different views.
or example, Tang et al. [24] used linked matrix factorization
LMF) to fuse multiple graph sources. Li et al. [25] proposed
earning a bipartite graph based on spectral clustering, which uses
ocal manifold fusion to integrate heterogeneous features and
pplies bipartite graphs to approximate similar graphs to improve
he computational efficiency. Since the clustering performance
epends heavily on the quality of the graph, Zhan et al. [26]
roposed a graph learning-based method to improve the quality
f a graph using rank constraints. The work in [27] automatically
earned the optimal weight of each graph without additional
arameters. Following this, the method in [28] incorporated clus-
ering and adaptive neighbor learning in a unified model. Wang
t al. [29] proposed learning each view graph matrix and unified
atrix in a mutually reinforcing manner.
Subspace clustering-based methods: The main idea of the

ethods based on subspace clustering is different from the
raph-based methods that learn the similarity matrix from the
riginal data, subspace clustering-based methods learn the sim-
larity matrix from the representation obtained by different regu-
arizers. The most representative methods include SSC [6],
RR [7], and the least squares regression (LSR) [30]. Among
hem, SSC pursues the sparse representation of self-representing
atrix using the l1 norm; LRR pursues the low-rank repre-
entation by the nuclear norm; LSR learns the representation
atrix through the least squares regression. Once the affinity
atrix is obtained, all of them use the spectral clustering algo-

ithm to yield the final clustering results. However, the above
ethods only handle the single-view clustering and cannot fully
tilize multiple views information. In order to describe the data
ore completely, various multi-view subspace learning methods
ave been proposed, such as: diversity-induced multi-view sub-
pace clustering (DiMSC) [31], exclusivity-consistency regularized
ulti-view subspace clustering (ECMSC) [32], latent multi-view
ubspace clustering (LMSC) [33], consistent and specific multi-
iew subspace clustering (CSMSC) [34]. Specifically, DiMSC and
CMSC use the diversity among different views to obtain a cluster
tructure with complementary information. LMSC uses latent rep-
esentation to explore potential complementary information from
ultiple views. CSMSC jointly utilizes the consistency and speci-

icity for subspace representation learning. However, consistency-
ased methods cannot fully use the diversity between different
iews and complementary-based methods cannot maintain a
ommon clustering structure. Recently, [17] proposed a Markov
hain method for learning a shared transition probability ma-
rix based on low-rank and sparse decomposition. Most of the
revious methods only considered the pairwise correlations of
he samples and ignored high-order correlations among multi-
le features. Therefore, several tensor-based methods have been
roposed to overcome the above limitations. Zhang et al. [15]
roposed a multi-view subspace clustering method with the
ow-rank tensor constraint in which all subspace representation
atrices are integrated to capture high-order correlations. The
tudy in [12] employed the tensor nuclear norm based on t-

VD to perform the low-rank approximation [35]. Following this



S. Wang, Y. Chen, Y. Jin et al. Knowledge-Based Systems 215 (2021) 106745

l
l
t
c
o
m

t
t
s
v
e
c
t
o

3

l
o
(
l
a
d
d

X
f
X
a
v
o

b

Fig. 1. The flowchart of the proposed ELRTA.
D

ine, Chen et al. [14] proposed to learn the graph regularized
ow-rank representation tensor and affinity matrix (GLTA) simul-
aneously. Unlike the above self-representation-based subspace
lustering methods, [13] studied essential tensor learning based
n the Markov chain to explore the high-order correlations of
ulti-view features.
Our work is connected to the works mentioned above, but

here are several significant differences between our work and
hem. Although the above works have achieved encouraging re-
ults, they mainly focus on the relevant information of single-
iew or multiple views, and ignore the impact of various types of
rrors on the clustering results. Besides, most existing methods
annot incorporate error removal in the multi-view clustering
ask. In this paper, we proposed an error learning method based
n Markov chain to solve the above shortcomings.

. Notations and preliminaries

In this section, we will introduce some notations and pre-
iminaries used in the remainder of this paper. Consider an N-
rder tensor, which is represented using bold calligraphy letters
e.g., X ). The matrices and vectors are represented by upper case
etters (e.g., X) and lower case letters (e.g., x) respectively. For
n N-order tensor X ∈ Rn1×n2×···×nN , a slice is a 2D matrix
efined by fixing all but two indices, and a fiber is a 1D vector
efined by fixing all but one [12]. For a third-order tensor X ∈

Rn1×n2×n3 , we denote its element (i, j, k) as Xijk. The Frobenius

norm is ∥X∥F =
(∑

i,j,k |Xijk|
2) 1

2 . We use the matlab notation
(i, :, :), X (:, i, :), X (:, :, i) to denote the ith horizontal, lateral and

rontal slice, where the frontal slice X (:, :, i) is also denoted as
(i). The Fourier transform alone the third dimension is denoted
s X̄ = fft(X , [], 3). Besides, the block circular matrix, block
ectorization, block diag matrix and the corresponding opposite
perations are defined as follows

circ(X ) =

⎡⎢⎢⎢⎣
X (1) X (n3) · · · X (2)

X (2) X (1)
· · · X (3)

...
. . .

. . .
...

X (n3) X (n3−1)
· · · X (1)

⎤⎥⎥⎥⎦ ,

bvec(X ) =

⎡⎢⎢⎢⎣
X (1)

X (2)

...

X (n3)

⎤⎥⎥⎥⎦ , bvfold(bvec(X )) = X ,

bdiag(X ) =

⎡⎢⎣X (1)

. . .

X (n3)

⎤⎥⎦ , bdfold(bdiag(X )) = X .

We introduce the following related definitions and theorems
[19] of t-SVD and the tensor nuclear norm in Eq. (5), which are
involved in the solution of the proposed method.
3

Definition 1 (t-Product). Let X ∈ Rn1×n2×n3 , and Y be n2 ×

n4 × n3. The t-product X ∗ Y is a tensor of size n1 × n4 × n3

M = X ∗ Y =: bvfold{bcirc(X )bvec(Y)}. (1)

Definition 2 (Tensor Transpose). If X is n1 × n2 × n3, then the
transpose tensor X T is an n2 × n1 × n3 tensor obtained by trans-
posing frontal slice 2 through n3.

efinition 3 (Identity Tensor). The identity tensor I ∈ Rn1×n2×n3

is the tensor whose first frontal slice is the n1 × n1 identity matrix
and all other frontal slices are zero.

Definition 4 (Orthogonal Tensor). A tensor Q ∈ n1×n2 × n3 is
orthogonal if it satisfies

QT
∗ Q = Q ∗ QT

= I, (2)

where ∗ is the t-product mentioned in Definition 1. QT
∈

Rn2×n1×n3 and I ∈ Rn1×n2×n3 are the transpose of tensor Q and
the identity tensor, respectively. The detailed explanation is given
in Definitions 2 and 3.

Definition 5 (f-Diagonal Tensor). A tensor is called f-diagonal if
each of its frontal slices is diagonal matrix.

Theorem 1 (t-SVD). Let X ∈ Rn1×n2×n3 , it can be factored as

X = U ∗ S ∗ VT , (3)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal ten-
sors mentioned in Definition 4, S ∈ Rn1×n2×n3 denotes an f-
diagonal tensor mentioned in Definition 5. Fig. 1 illustrates the
decomposition.

According to [19], if the t-SVD of X ∈ Rn1×n2×n3 is given by
X = U ∗S ∗VT in Eq. (3), then it is can be written as a finite sum
of outer products of matrices:

X =

min(n1,n2)∑
i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)T . (4)

Definition 6 (Tensor Multi-rank). The multi-rank of X ∈ Rn1×n2×n3

is a vector r ∈ Rn3 with the ith element as the rank of the ith
frontal slice of S̄.

Considering above definitions, the t-SVD-based tensor nuclear
norm is defined as [19]:

∥X∥⊛ =

min(n1,n2)∑
i=1

n3∑
k=1

S̄(i, i, k), (5)

where the t-SVD-based tensor nuclear norm is a valid norm and
the tightest convex relaxation to l1-norm of the tensor multi-rank
mentioned in Definition 6.
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. The proposed ELRTA

Given the vth (v = 1, . . . ,M) feature matrix X (v)
=

x(v)1 , x(v)2 , . . . , x(v)N

]
∈ Rd(v)×N , where each column is a d(v) dimen-

ional sample in the vth view and N is the number of samples.
he key of the Markov chain multi-view clustering method [17]
s to construct a transition probability matrix. Given a weighted
raph G = (V , E), vertex set V represents the data points, and
dge set E denotes the similarity between two connecting data
oints. First, a similarity matrix S ∈ RN×N : Sij = exp(− ∥xi−xj∥22

σ2 ) is
stablished, where Sij denotes the similarity between data points
i and xj, σ 2 denotes the standard deviation. Then the correspond-
ng transition probability matrix P = (D−1S) can be calculated,
here D represents the degree matrix of the weighted graph
. For the stationary distribution π satisfying π = Pπ , define
iagonal matrix Π with its ith diagonal elements as the stationary
istribution π (i). Then, a Laplacian matrix for Markov chain based
pectral clustering can be constructed by L = Π −

ΠP+PTΠ
2 .

inally, the k-means algorithm is used to cluster the eigenvectors
orresponding to the r smallest generalized eigenvalues of the
eneralized eigenproblem Lu = λΠu. Algorithm 1 summarizes

the overall scheme of spectral clustering via Markov chain by
computing the transition probability matrix [13,17].

Algorithm 1 : Spectral clustering via Markov chain

Input: Graph G = (V , E)
1: Define a random walk over G with a transition probability

matrix P = (D−1S) such that it has a stationary distribution π

satisfying π = Pπ ;
2: Define diagonal matrix Π with its i-th diagonal elements as

the stationary distribution π (i);
3: Construct the matrix L = Π −

ΠP+PTΠ
2 ;

4: Obtain the r smallest generalized eigenvectors u1, · · · , ur of
the generalized eigenproblem Lu = λΠu;

5: Run the k-means algorithm to cluster the row vectors of U ,
where U is the matrix consisting of the vectors u1, . . . , ur ;

utput: Clustering results.

In fact, the probability transition matrix may have more or
ess noise. To handle this, RMSC divides the probability transition
atrix P (v) for each view into two parts using the low-rank and

sparse decomposition: the shared transition probability matrix Z
among all views and the error matrix. Each error matrix encodes
noise of the transition matrix in the vth view. RMSC assumes that
the shared transition probability matrix Z tends to be low-rank,
while the error matrices of all views are sparse. The RMSC model
is formulated as follows:

min
Z,E(v)

∥Z∥∗ + λ

M∑
v=1

∥E(v)
∥1 s.t. P (v)

= Z + E(v). (6)

Considering that RMSC only learns the common information
between multiple views, and ignores the importance of the differ-
ence information contained in each view to clustering. Therefore,
ETLMSC explores the high-order correlations between multiple
views by constructing the transition probability matrix {P (v)

}
M
v=1

of all views as a third-order tensor P ∈ RN×N×M . In addition,
since the noise in the transition probability vectors is dense, and
noisy samples should be sparse, ETLMSC uses l2,1 norm instead
of l1 norm to encode the sparsity. ETLMSC is expressed as the
following model:

min ∥Z∥⊛ + λ∥E∥2,1 s.t. P = Z + E, (7)

Z,E

4

where Z is the clean low-rank tensor, constrained by the t-SVD-
based tensor nuclear norm in Eq. (5) and E denotes the error term,
constrained by the l2,1 norm. Although ETLMSC can effectively
learn the principle information among multiple views, it only
eliminates the sample-specific noise [7].

4.1. The proposed ELRTA model

As stated in [7], there are different types of noise except for
the sample-specific noise. One typical example is hyperspectral
images, which are usually contaminated by different types of
noise, including Gaussian noise, salt and pepper noise, stripes,
deadlines, and so on [36]. In some cases, the features of a view
are more or less discriminative for clustering, and errors in more
discriminative features may significantly reduce clustering per-
formance [18]. In this case, the Markov chain-based multi-view
clustering methods RMSC and ETLMSC fail. Based on ETLMSC, we
add the group l1 norm to enhance the sparsity among different
views, i.e., using the l2 norm in each view and the l1 norm among
views. Benefitting from tensor learning that is able to encode the
high-order correlations among multiple views and to eliminate
various errors, we propose the ELRTA model as follows:

min
Z,E

∥Z∥⊛ + λ∥E∥2,1 + β∥E∥G1 s.t. P = Z + E. (8)

Inspired by the study in [13], the transition probability tensor
P is also decomposed into two parts Z and E . To make the
magnitude of all error matrices as consistent as possible, ELRTA
calculates the group l1 and l2,1 norms of E by vectorizing all error
matrices. The group l1 and l2,1 norms are defined as follows:

∥E∥G1 = ∥E∥G1 =

N×M∑
i=1

∥e(i)∥2,

∥E∥2,1 = ∥E∥2,1 =

N∑
j=1

∥e(j)∥2,

(9)

where E =
[
E(1)

; E(2)
; · · · ; E(M)

]
. e(i) and e(j) denote the ith row

and jth column of E. The group l1 and l2,1 norms are calculated
by the sum of the l2 norm of all e(i) and e(j) respectively, which
encourage the rows and columns of E to be sparse. Note that
Eq. (9) is the equivalent form of the group l1 norm and l2,1 norm
of tensor. Since the group l1 norm and l2,1 norm are defined based
on matrix elements and are local constraint of the matrix, ELRTA
uses the group l1 and l2,1 norms constraint tensor E is equivalent
to constraint matrix E.

4.2. Optimization of ELRTA

The above optimization problem can be solved by the alter-
nating direction method of multipliers (ADMM) [37]. The main
idea of ADMM is to reformulate the original constrained problem
as the unconstrained problem using an augmented Lagrangian
function, and then iteratively update each variable by fixing all
the other variables [38]. The augmented Lagrangian function is
defined as the sum of the objective function and the penalty
term under the Frobenius norm. The corresponding augmented
Lagrangian function of Model (8) is:

L(Z, E; Λ, ρ) = ∥Z∥⊛ + λ∥E∥2,1 + β∥E∥G1 +

⟨Λ,P − Z − E⟩ +
ρ

2
∥P − Z − E∥

2
F ,

(10)

here Λ represents the Lagrange multiplier, and ρ is an adaptive
enalty parameter. ⟨·⟩ denotes the standard trace inner product,
.e., ⟨A, B⟩ = Tr(ATB). Following ADMM, the steps of the iterative
inimization scheme are as follows:
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Z-Subproblem: By fixing other variables to constant, we up-
date Z by solving

Zk+1 = argmin
Z

L(Z, Ek; Λk, ρk)

= argmin
Z

∥Z∥⊛ +
ρk

2
∥Z − (P − Ek +

Λk

ρk
)∥2

F .
(11)

In order to facilitate calculation, we need to rotate Z to obtain
Z̃ ∈ RN×M×N . Then, problem (11) can be solved by the tensor
tubal-shrinkage operator [16]:

Z̃k+1 = C N
ρk
(F) = U ∗ C N

ρk
(S) ∗ VT , (12)

where F = P − Ek +
Λk
ρk

= U ∗S ∗VT and C N
ρk
(S) = S ∗J . Herein,

J is an N × M × N f-diagonal tensor whose diagonal element in
the Fourier domain is Jf (i, i, j) = max{1 −

[
N/ρk(S̄(j)(i, i))

]
, 0}.

E-Subproblem: The error term E can be updated by solving

Ek+1 = argmin
E

L(Zk+1, E; Λk, ρk)

= argmin
E

λ∥E∥2,1 + β∥E∥G1 +
ρk

2
∥E − B∥

2
F .

(13)

here B = P − Zk+1 +
Λk
ρk

.
The above optimization problem (13) can be equivalently writ-

ten as the following form:

min
E

λ

ρk
∥E∥2,1 +

β

ρk
∥E∥G1 +

1
2
∥E − B∥2

F , (14)

here B is constructed by vertically concatenating each slice of
ensor B. Taking the derivative of Eq. (14) with respect to E and
aking it equal to zero. The optimization problem in (14) can be
tated equivalently as follows [18]:
λ

ρk
D̂e(j) +

β

ρk
De(j) + (e(j) − B(j)) = 0, (15)

where B(j) denotes the jth column of matrix B. D̂ is a block
diagonal matrix with the jth diagonal block as (1/(2∥e(j)∥2)) × I ,
and I is an identity matrix with a size of N × M . D is a diagonal
matrix and the ith diagonal element is (1/(2∥e(i)∥2)). e(j) can be
obtained by:

e(j) = (
λ

ρk
D̂ +

β

ρk
D + 1)−1B(j). (16)

Λ and ρ Subproblems: Λ and ρ are updated by

Λk+1 = Λk + ρk(P − Zk+1 − Ek+1);
ρk+1 = min{γ ∗ ρk, ρmax},

(17)

where γ facilitates the convergence speed. ρmax is the maximum
value of the penalty parameter ρ. Algorithm 2 summarizes the
whole procedure of the proposed ELRTA. We sum the frontal
slices of the transition probability tensor Z to calculate the transi-
tion probability matrix Z =

∑M
i=1 Z(:, :, i), and then put Z into the

second step of Algorithm 1 as the transition probability matrix to
obtain the final clustering results.

4.3. Complexity analysis

The complexity of our proposed method mainly depends on
the calculation of subproblems: Z and E . For subproblem Z ,
the rotated Z̃ takes O(2N2Mlog(N) + N2M2) ≈ O(2N2Mlog(N))
per iteration, where N ≫ M and log(N) > M . The first term
O(2N2Mlog(N)) represents the computational cost of the FFT
and inverse FFT of the third-order tensor, and the second term
O(N2M2) denotes the cost of SVD of N N × M matrices. For
the unrotated Z , the cost of SVD for M N × N matrices is
O(N3M). Therefore, when the number of samples N is relatively
large, the calculation after rotating Z will significantly reduce the
5

Algorithm 2 : Error-robust Low-Rank Tensor Approximation
(ELRTA) for Multi-view Clustering
Input: multi-view features: {X (v)

}; parameters: λ, β;
Initialize: P, Z, Λ initialized to 0; E(i)

= rand;
1: while not converged do
2: Update Z̃k+1 by Eq. (12);
3: for j = 1, · · · ,N do
4: Update e(j) by Eq. (16);
5: end for
6: Update Λk+1 and ρk+1 by Eq. (17);
7: Check the convergence condition:
8: ∥Zk+1 − Zk∥∞ ≤ tol, ∥Ek+1 − Ek∥∞ ≤ tol;
9: end while

10: Calculate the clean transition probability matrix Z =
∑M

i=1
Z(:, :, i);

11: Take Z as the transition probability matrix of Algorithm 1 to
obtain the clustering results.

computational complexity. For subproblem E , it needs O(2N2M)
cost in each iteration. To summarize, the total complexity of our
proposed ELRTA algorithm is O(K (2N2Mlog(N))) + O(N3), where

is the total number of iterations, and O(N3) denotes the general
omputational complexity of the spectral clustering.

. Experimental results

In this section, we conduct experiments on three real-world
atasets to investigate the performance of the proposed ELRTA.
ll experiments are implemented in MATLAB 2016a on worksta-
ion with 3.50 GHz CPU and 16 GB RAM.

.1. Experimental settings

.1.1. Datasets
We select three widely used datasets to evaluate the clustering

erformance.

• The BBC4view dataset consists of 685 images of 5 object
categories, each with 137 images and associated with 4
views;

• The BBCSport dataset contains files from the BBC Sports
website, which corresponds to sports news in 5 subject
areas (2 views);

• The Still-DB dataset is an action image dataset that contains
467 images of 6 object categories and associated with 2
views.

.1.2. Compared methods
We compare the proposed ELRTA with three single-view and

welve multi-view state-of-the-art clustering methods:
SCbest [6]: the best results of sparse subspace clustering method
sing the l1 norm to learn a representation matrix; LRRbest [7]:
he best results of the low-rank representation method using
he nuclear norm to learn a representation matrix; RSSbest [39]:
he best results of the robust subspace segmentation method
sing the least square regression; RMSC [17]: multi-view clus-
ering using the low-rank and sparse matrix decomposition to
earn the shared transition probability matrix as the input to
he standard Markov chain; DiMSC [31]: multi-view subspace
lustering exploiting the diversity among different views; LT-
SC [15]: tensor-based multi-view clustering using the low-rank

ensor constraint to learn a representation tensor; MVCC [22]:
ulti-view concept clustering based on the concept factoriza-

ion with local manifold regularization, which drives a common
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able 1
lustering results (mean ± standard deviation) on BBC4view.
Data Type Method ACC NMI AR F-score Precision Recall

BBC4view

SVC
SSCbest [6] 0.660 ± 0.002 0.494 ± 0.005 0.470 ± 0.001 0.599 ± 0.001 0.578 ± 0.001 0.622 ± 0.001
LRRbest [7] 0.802 ± 0.000 0.568 ± 0.000 0.621 ± 0.000 0.712 ± 0.000 0.697 ± 0.000 0.727 ± 0.000
RSSbest [39] 0.837 ± 0.000 0.621 ± 0.000 0.665 ± 0.000 0.747 ± 0.000 0.720 ± 0.000 0.775 ± 0.000

MVC

RMSC [17] 0.775 ± 0.003 0.616 ± 0.004 0.560 ± 0.002 0.656 ± 0.002 0.703 ± 0.003 0.616 ± 0.001
DiMSC [31] 0.892 ± 0.001 0.728 ± 0.002 0.752 ± 0.002 0.810 ± 0.002 0.811 ± 0.002 0.810 ± 0.002
LT-MSC [15] 0.591 ± 0.000 0.442 ± 0.005 0.400 ± 0.001 0.546 ± 0.000 0.525 ± 0.000 0.570 ± 0.001
MVCC [22] 0.745 ± 0.001 0.587 ± 0.001 0.550 ± 0.000 0.656 ± 0.001 0.654 ± 0.001 0.658 ± 0.000
MLAN [28] 0.853 ± 0.007 0.698 ± 0.010 0.716 ± 0.005 0.783 ± 0.004 0.776 ± 0.003 0.790 ± 0.004
ECMSC [32] 0.308 ± 0.028 0.047 ± 0.009 0.008 ± 0.018 0.322 ± 0.017 0.239 ± 0.009 0.497 ± 0.064
t-SVD [12] 0.858 ± 0.001 0.685 ± 0.002 0.725 ± 0.002 0.789 ± 0.001 0.800 ± 0.001 0.778 ± 0.002
GMC [29] 0.693 ± 0.000 0.563 ± 0.000 0.479 ± 0.000 0.633 ± 0.000 0.501 ± 0.000 0.860 ± 0.000
LMSC [33] 0.883 ± 0.000 0.699 ± 0.000 0.746 ± 0.000 0.806 ± 0.000 0.797 ± 0.000 0.816 ± 0.000
GLTA [14] 0.910 ± 0.000 0.771 ± 0.000 0.810 ± 0.000 0.854 ± 0.000 0.864 ± 0.000 0.845 ± 0.000
GLSR [4] 0.917 ± 0.000 0.780 ± 0.000 0.811 ± 0.000 0.856 ± 0.000 0.835 ± 0.000 0.878 ± 0.000
ETLMSC [13] 0.745 ± 0.057 0.661 ± 0.039 0.562 ± 0.047 0.660 ± 0.038 0.693 ± 0.032 0.630 ± 0.047

Proposed ELRTA 0.938 ± 0.070 0.936 ± 0.047 0.915 ± 0.073 0.935 ± 0.087 0.943 ± 0.088 0.927 ± 0.086
consensus representation for multiple views; MLAN [28]: multi-
view clustering with adaptive neighbors; ECMSC [32]: multi-view
clustering exploiting supplementary information among different
views; t-SVD [12]: tensor-based multi-view subspace clustering
via the tensor multi-rank constraint; GMC [29]: graph-based
multi-view clustering method; LMSC [33]: multi-view clustering
via latent representation learning; GLTA [14]: multi-view cluster-
ing via simultaneously learning the graph regularized low-rank
tensor representation and affinity matrix; GLSR [4]: multi-view
clustering with the graph-regularized least squares regression;
ETLMSC [13]: multi-view clustering based on the Markov chain.

5.1.3. Evaluation metrics
We adopt six widely used evaluation metrics to quantitatively

valuate the performance of all clustering methods. The metrics
nclude ACC (accuracy), NMI (normalized mutual information),
recision, Recall, F-score, AR (adjusted rand index). For all cluster-
ng methods, larger values of the metrics are expected to achieve
etter clustering performance [40].

.2. Results

The clustering results of all datasets are shown in Tables 1,
, and 3. The best clustering results are highlighted in boldface
nd the second best clustering results are underlined. Due to
andomness, we run all algorithms 10 times and report the mean
alues with their standard deviations.
For the BBC4view dataset, the clustering results are shown in

able 1. Our method, GLSR and GLTA achieved excellent cluster-
ng results, where GLTA learned the affinity matrix and the low-
ank tensor representation. However, the impact of various noise
n the dataset is also critical. Based on this, the proposed ELRTA
ainly focuses on eliminating various types of errors Among all
ethods, the proposed ELRTA has yielded the best performance
n the BBC4view dataset. Our method achieves significant im-
rovement of approximately 2.1%, 15.6%, 10.4%, 7.9%, 10.8% and
.9% over the second-best GLSR method with respect to the six
valuation metrics.
Tables 2 and 3 recorded the clustering results of all compared

ethods on the BBCSport and Still-DB datasets. In Table 2, the
LRTA, ETLMSC, and GLTA methods show clustering advantages
n the BBCSport dataset. In Table 3, the performance of GLTA on
he Still-DB dataset is poor, while ELRTA and ETLMSC still have
etter performance, which also proves that the noise removal
echnology is stable and effective. It is worth noting that, as the
ost competitive method, ETLMSC is also based on the Markov
hain method for low-rank tensor and noise learning. However,
6

ETLMSC only focuses on eliminating sample-specific noise. As
shown in Table 2, for all metrics, ELRTA improves the results by
approximately 3.5%, 1.2%, 4.1%, 3.1%, 3.1% and 3% over ETLMSC,
while the improvement of ELRTA is 2.4%, 1.7%, 1.9%, 1.4%, 1.7%
and 1.2% in Table 3. This means that ETLMSC is not robust to
various noise in real applications. In summary, ELRTA has the best
clustering performance among all methods on the BBCSport and
Still-DB dataset.

It can be found that most multi-view clustering methods
have better clustering performance than all single-view clustering
methods including SSCbest, LRRbest, and RSSbest. For example, the
proposed ELRTA obtained at least 20% improvement over all
single-view clustering methods except for the ACC metric. The
advantage of the proposed ELRTA on the Still-DB dataset is more
prominent. The main reason is that the multi-view clustering
methods can simultaneously use the complementary information
among multiple views. This conclusion has been proven in many
literatures, including GLTA [14] and GLSR [4].

The multi-view clustering methods can be roughly divided
into two groups: matrix-based methods and tensor-based meth-
ods. The experimental results show that the tensor-based meth-
ods explore the high-order correlation information, resulting
in clustering performance better than that of the matrix-based
methods. For example, our method improves each metric by at
least 10% compared with RMSC and GMC. Among them, GMC uses
the original multi-view features to learn the similarity matrix,
while the original data is usually corrupted by different noise and
outliers.

Furthermore, the proposed ELRTA achieves an average im-
provement of at least 10% compared to the tensor-based methods
LT-MSC and t-SVD. This shows that our method can make full use
of the relationship between spectral clustering and Markov chain
to obtain effective clustering information.

In summary, the proposed ELRTA achieves the best perfor-
mance over all competing methods. Furthermore, ELRTA is su-
perior to the Markov chain-based methods RMSC and ETLMSC,
which are most relevant to our method, indicating that the ELRTA
method is effective by introducing the group l1 norm to remove
various types of noise. To make the magnitude values consistent,
the columns of the error matrices are arranged vertically in the
calculation process, which is also necessary to obtain superior
clustering results.

5.3. Model analysis

(1) Numerical Convergence: This subsection studies the nu-
merical convergence of the proposed ELRTA model. Fig. 2 shows
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Fig. 2. Errors versus iterations on (a) BBC4view, (b) BBCSport, and (c) Still-DB databases.
able 2
lustering results (mean ± standard deviation) on BBCSport.
Data Type Method ACC NMI AR F-score Precision Recall

BBCSport

SVC
SSCbest [6] 0.627 ± 0.003 0.534 ± 0.008 0.364 ± 0.007 0.565 ± 0.005 0.427 ± 0.004 0.834 ± 0.004
LRRbest [7] 0.836 ± 0.001 0.698 ± 0.002 0.705 ± 0.001 0.776 ± 0.001 0.768 ± 0.001 0.784 ± 0.001
RSSbest [39] 0.878 ± 0.000 0.714 ± 0.000 0.717 ± 0.000 0.784 ± 0.000 0.787 ± 0.000 0.782 ± 0.000

MVC

RMSC [17] 0.826 ± 0.001 0.666 ± 0.001 0.637 ± 0.001 0.719 ± 0.001 0.766 ± 0.001 0.677 ± 0.001
DiMSC [31] 0.922 ± 0.000 0.785 ± 0.000 0.813 ± 0.000 0.858 ± 0.000 0.846 ± 0.000 0.872 ± 0.000
LT-MSC [15] 0.460 ± 0.046 0.222 ± 0.028 0.167 ± 0.043 0.428 ± 0.014 0.328 ± 0.028 0.629 ± 0.053
MVCC [22] 0.928 ± 0.000 0.816 ± 0.000 0.831 ± 0.000 0.870 ± 0.000 0.889 ± 0.000 0.853 ± 0.000
MLAN [28] 0.721 ± 0.000 0.779 ± 0.000 0.591 ± 0.000 0.714 ± 0.000 0.567 ± 0.000 0.962 ± 0.000
ECMSC [32] 0.285 ± 0.014 0.027 ± 0.013 0.009 ± 0.011 0.267 ± 0.020 0.244 ± 0.007 0.297 ± 0.045
t-SVD [12] 0.879 ± 0.000 0.765 ± 0.000 0.784 ± 0.000 0.834 ± 0.000 0.863 ± 0.000 0.807 ± 0.000
GMC [29] 0.807 ± 0.000 0.760 ± 0.000 0.722 ± 0.000 0.794 ± 0.000 0.727 ± 0.000 0.875 ± 0.000
LMSC [33] 0.847 ± 0.003 0.739 ± 0.001 0.749 ± 0.001 0.810 ± 0.001 0.799 ± 0.001 0.822 ± 0.001
GLTA [14] 0.939 ± 0.000 0.825 ± 0.000 0.849 ± 0.000 0.885 ± 0.000 0.890 ± 0.000 0.880 ± 0.000
GLSR [4] 0.873 ± 0.000 0.781 ± 0.000 0.803 ± 0.000 0.851 ± 0.000 0.837 ± 0.000 0.865 ± 0.000
ETLMSC [13] 0.959 ± 0.086 0.972 ± 0.058 0.949 ± 0.107 0.961 ± 0.081 0.963 ± 0.078 0.960 ± 0.085

Proposed ELRTA 0.994 ± 0.053 0.984 ± 0.030 0.990 ± 0.052 0.992 ± 0.040 0.994 ± 0.034 0.990 ± 0.045
[

the iterative error curves on the BBC4view, BBCSport, and Still-
DB datasets. The horizontal ordinate represents the number of
iterations while the vertical coordinate denotes the errors. It
can be seen that the error of the proposed ELRTA method are
close to 0 after 25 iterations. This means that our algorithm can
converge steadily after a certain number of iterations. In the
optimization process, the error curves gradually decrease as the
number of iterations increases and tend to stabilize after several
fluctuations. The above conclusions show that our algorithm has
strong numerical convergence.

(2) Parameter Selection: We use all datasets to analyze the
parameter sensitivity. λ represents the effect of sample-specific
noise. β represents the impact of various types of noise and
7

their combinations. We tune two parameters λ and β from
0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5] and [0.01, 0.05, 0.1,
0.5, 1, 10], respectively. Fig. 3 shows the ACC results obtained
by different combinations of λ and β . For the BBCSport dataset,
most combinations can achieve relatively high ACC values, which
shows the partial stability of the proposed ELRTA method. Overall,
we find that the optimal values of λ and β are within the
range of [0.009, 0.005] and [0.003, 0.01], respectively. Among the
optimal values, the value of parameter β is relatively large, which
indicates that various types of noise and their combinations have
a greater impact on the datasets, highlighting the necessity of our
proposed ELRTA method.
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able 3
lustering results (mean ± standard deviation) on Still-DB.
Data Type Method ACC NMI AR F-score Precision Recall

Still-DB

SVC
SSCbest [6] 0.328 ± 0.002 0.138 ± 0.003 0.087 ± 0.001 0.295 ± 0.001 0.222 ± 0.001 0.440 ± 0.007
LRRbest [7] 0.306 ± 0.004 0.109 ± 0.003 0.061 ± 0.004 0.219 ± 0.000 0.223 ± 0.003 0.212 ± 0.004
RSSbest [39] 0.342 ± 0.000 0.122 ± 0.000 0.088 ± 0.000 0.258 ± 0.000 0.237 ± 0.000 0.282 ± 0.000

MVC

RMSC [17] 0.305 ± 0.010 0.089 ± 0.009 0.073 ± 0.011 0.221 ± 0.002 0.231 ± 0.004 0.219 ± 0.002
DiMSC [31] 0.323 ± 0.002 0.122 ± 0.008 0.083 ± 0.001 0.249 ± 0.000 0.235 ± 0.004 0.256 ± 0.002
LT-MSC [15] 0.342 ± 0.002 0.136 ± 0.002 0.090 ± 0.001 0.252 ± 0.002 0.243 ± 0.001 0.261 ± 0.003
MVCC [22] 0.251 ± 0.000 0.078 ± 0.000 0.005 ± 0.000 0.278 ± 0.000 0.174 ± 0.000 0.702 ± 0.000
MLAN [28] 0.349 ± 0.000 0.138 ± 0.000 0.098 ± 0.000 0.272 ± 0.000 0.242 ± 0.000 0.310 ± 0.000
ECMSC [32] 0.320 ± 0.008 0.111 ± 0.007 0.090 ± 0.001 0.264 ± 0.010 0.237 ± 0.006 0.300 ± 0.031
t-SVD [12] 0.347 ± 0.010 0.130 ± 0.004 0.088 ± 0.003 0.255 ± 0.004 0.239 ± 0.002 0.273 ± 0.006
GMC [29] 0.251 ± 0.000 0.078 ± 0.000 0.005 ± 0.000 0.278 ± 0.000 0.174 ± 0.000 0.701 ± 0.000
LMSC [33] 0.327 ± 0.003 0.136 ± 0.003 0.084 ± 0.011 0.269 ± 0.005 0.235 ± 0.007 0.247 ± 0.012
GLTA [14] 0.366 ± 0.007 0.126 ± 0.005 0.102 ± 0.005 0.262 ± 0.003 0.251 ± 0.004 0.275 ± 0.003
GLSR [4] 0.368 ± 0.003 0.142 ± 0.002 0.105 ± 0.003 0.279 ± 0.003 0.246 ± 0.002 0.321 ± 0.006
ETLMSC [13] 0.604 ± 0.043 0.520 ± 0.015 0.423 ± 0.029 0.523 ± 0.024 0.518 ± 0.022 0.528 ± 0.027

Proposed ELRTA 0.628 ± 0.023 0.537 ± 0.039 0.442 ± 0.022 0.537 ± 0.018 0.535 ± 0.018 0.540 ± 0.019
Table 4
Average running time (in seconds) on all datasets.
Method DiMSC LT-MSC ECMSC t-SVD GLSR LMSC GLTA ETLMSC ELRTA

BBC4view 207.21 335.51 1238.70 97.99 68.73 180.38 204.52 48.06 1101.51
BBCSport 38.15 77.23 266.86 19.59 24.92 59.28 54.63 4.21 195.09
Still-DB 6.23 18.68 8.82 6.12 9.03 12.30 17.62 2.29 187.21
Fig. 3. Parameter selection with respect to λ and β on (a) BBC4view, (b) BBCSport, and (c) Still-DB databases.
(3) Running Time: Table 4 shows the average running time
(in seconds) of the proposed ELRTA method and eight multi-
view clustering methods on all datasets. We can observe that
the recently proposed ETLMSC requires the least running time on
all datasets, but its clustering performance is worse than that of
the proposed ELRTA method, especially on the BBC4view dataset
(as shown in Table 1). Since ELRTA imposes two constraints on
the error term to remove different combinations of noise, ELRTA
costs more running times than the other methods. In summary,
although the proposed ELRTA is time-consuming, it significantly
improves the clustering performance.
8

6. Conclusions and future work

In this paper, we proposed a tensor model based on Markov
chain: error-robust low-rank tensor approximation for multi-
view clustering (ELRTA). ELRTA constructs the transition proba-
bility matrices into a third-order tensor and decomposes it into
a noise-free transition probability tensor and an error term. Our
method has two main advantages: (1) The noise of the transition
probability tensor is filtered out by decomposition, and the t-
SVD-based tensor nuclear norm constraint is used to perform
low-rank approximation to capture the high-order correlations
among multiple views. Compared with matrix-based clustering
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ethods such as RMSC [4,17,33], our ELRTA fully uses the rele-
ant information among views; (2) The clustering performance is
ffectively improved by applying the group l1 and l2,1 norms on
he error term to eliminate the various types of errors. In addition,
n iterative algorithm is proposed. Experimental results on three
eal-world datasets show that ELRTA has superior performance
ver the existing multi-view clustering methods. In future work,
onsidering the limitations of large datasets, we will focus on
eveloping fast and scalable multi-view clustering methods.
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