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To See in the Dark: N2DGAN for Background
Modeling in Nighttime Scene

Zhenfeng Zhu , Yingying Meng, Deqiang Kong, Xingxing Zhang ,

Yandong Guo, and Yao Zhao , Senior Member, IEEE

Abstract— Due to the deteriorated conditions of illumination
lack and uneven lighting, the performance of traditional back-
ground modeling methods is greatly limited for the surveillance of
nighttime video. To make background modeling under nighttime
scene performs as well as in daytime condition, we put forward
a promising generation-based background modeling framework
for foreground surveillance. With a pre-specified daytime refer-
ence image as background frame, the GAN based generation
model, called N2DGAN, is trained to transfer each frame of
nighttime video to a virtual daytime image with the same
scene to the reference image except for the foreground part.
Specifically, to balance the preservation of background scene
and the foreground object(s) in generating the virtual daytime
image, we presented a two-pathway generation model, in which
the global and local sub-networks were well combined with
spatial and temporal consistency constraints. For the sequence
of generated virtual daytime images, a multi-scale Bayes model
was further proposed to characterize pertinently the temporal
variation of background. We manually labeled ground truth on
the collected nightime video datasets for performance evaluation.
The impressive results illustrated in both the main paper and
supplementary show the effectiveness of our proposed approach.

Index Terms— GAN, background model, foreground detection,
Bayes theory.

I. INTRODUCTION

BACKGROUND modeling originates in numerous applica-
tions, especially in visual surveillance [1]–[7]. In the last

decades, state-of-the-art approaches for background modeling
have been proposed for visual surveillance under daytime
scenes. On a whole, they are popularly dominated by a family
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Fig. 1. Flowchart of three kinds of background modeling methods for
foreground object detection in nighttime surveillance video. (a) Conventional.
(b) Enhancement-based. (c) Generation-based.

of statistical based methods, like GMM [4] and KDE [2].
Besides, Codebook [3] and ViBe [1] are also two represen-
tative methods that achieve good performance for modeling
the background. Most recently, several deep learning based
works [5]–[7] for background modeling were also proposed.

Despite the achievements by these approaches, all of them
face quite a challenge in the case of illumination lack and
uneven lighting at night, especially in the presence of dynamic
background, change of light, and some extreme weather condi-
tions such as rain, snow and fog. As we can see from Fig.1 (a),
the conventional background modeling methods, like GMM,
etc., fail to distinguish the foreground object from background
due to the deteriorated condition of illumination lack. To deal
with such a case, an intuitive way as shown in Fig.1 (b) is to
perform image enhancement through E(·) first, and then build
background model H E(·) on the bases of the enhanced frames
En

t ’s, just like background modeling under daytime scene.
However, since these enhancement methods [8]–[10] are not
task-driven, they usually lose sight of pixel-wise consistency of
inter-frame, and yet it is of great significance for background
modeling.

Although the captured images can be brightened by equip-
ping a light with the camera, there are still deficiencies in
the use of these devices. First, it will inevitably increase
the cost of surveillance. Second, compared with the imaging
under the natural light in the daytime, the visual quality by
this way is still unsatisfactory. For example, some problems
including serious noise, blurring, and unbalanced illumination
will further bring difficulties for some vision processing tasks
including object detection. In addition, it also won’t work well
for monitoring distant object.
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To address this issue, we make a novel contribution in inte-
grating generative model into background modeling. Fig.1 (c)
shows the proposed generation-based background modeling
framework. With a pre-specified daytime reference image I d

as ground-truth background frame, the generation model G(·)
is trained for transferring each frame I n

t of nighttime video to a
virtual daytime image Gn

t with the same scene to the reference
image except for the foreground region. Furthermore, the back-
ground model HG(·) can be built to obtain FG

t with the
detected foreground object. In fact, the unique reference image
plays a significant role for enforcing the pixel-wise temporal
consistency of inter-frames in the generation of virtual daytime
images.

To the best of our knowledge, this paper is one of the
first attempts to introduce GANs based deep learning network
for background modeling. In summary, the following points
highlight several contributions of the paper:

• This paper proposes a reasonable and innovative solution,
i.e., N2DGAN, to the longstanding problem of foreground
object detection under nighttime scene. As a promising
generation-based framework, it makes background mod-
eling work as well as in daytime condition.

• To simultaneously preserve background scene and the
foreground object(s) in generating the virtual daytime
image, we present a two-pathway generation model,
in which the global and local sub-networks are seam-
lessly combined with spatial and temporal consistency
constraints.

• For the sequence of generated virtual daytime images,
a multi-scale Bayes model is proposed to characterize
pertinently the temporal variation of background. Thus,
while suppressing effectively noise coming from virtual
daytime image generation, we can ensure the favorable
detection of foreground objects.

• We collect a benchmark dataset including indoor and
outdoor scenes with manually labeled ground truth,
which can serve as a good benchmark for the research
community.

II. RELATED WORK

A. Nighttime Image Enhancement

Here we simply divide image enhancement methods into
two categories: reference based and non-reference based
methods.

Non-reference based methods mainly focus on how to
improve low contrast images. As a naive method, Histogram
Equalization (HE) [9] spreads out the most frequent intensity
values, thus gaining a higher contrast for the areas of lower
contrast. The purpose of Retinex based image enhancement
[MSR] [8] is to estimate the illumination from original image,
thereby decomposing reflectance image and eliminating the
influence of uneven illumination. In recent years, some deep
learning based low light image enhancement approaches were
also proposed, such as LIME [44], LLNet [45], and Struct [46].
Although they generally can achieve better perceptual quality
than HE and MSR, they highly depend on the amount of
training data.

Reference based methods [11]–[13] usually combine images
of a scene at different time intervals by image fusion. These
methods usually produce unnatural effects in the enhanced
images. Besides, it would increase signal to noise ratio, which
is adverse for further video analysis and applications such as
foreground detection.

B. Generative Adversarial Nets

As a novel way to train generative models, GANs [14] pro-
posed by Goodfellow et al. has received extensive applications
in various of visual tasks [15]–[20]. In [15], GANs was applied
for image completion with globally and locally consistent
adversarial training. Reference [16] used back-propagation on
a pretrained image generative network for image inpainting.
To transfer the original image into a cartoon style, domain
transfer network (DTN) [17] was proposed. In [18], [19],
GANs has been employed for image super-resolution and
image deblurring. Recently, a general-purpose solution to
image-to-image translation based on conditional adversarial
networks, also known as pixel2pixel network, was proposed
in [20], and shows good performances on a variety of tasks like
photo generation and semantic segmentation. In our previous
work [21], a generative adversarial networks (GANs) based
framework for nighttime image enhancement was proposed.

C. Background Modeling Algorithms

Broadly speaking, background modeling methods can
be divided into two categories: pixel-based methods and
block-based methods.

One of the most popular pixel-based methods is Gaussian
mixture models(GMM) [4], [22], [23]. It models the distri-
bution at each pixel observed over time using a summation
of weighted Gaussian distribution. Such methods generally
perform well with the multi-modal nature of many practical
situations. However, if high or low frequency changes appear
in the background, the model can’t be adaptively tuned in
time and even may miss some information about fast moving
objects. Consequently, Elgammal et al. [24] have developed
a non-parametric background model, which estimates the
probability of observing pixel intensity values based on a
sample of intensity values for each pixel.

Different from GMM and KDE, some deep learning based
works [5]–[7] for background modeling have also been pro-
posed in recent years. But these models are all supervised
and require many manually labeled data for model training.
Thus, they obviously lack of scalability to a scene unknown
beforehand, which also means their performances greatly
depend on the collected training datasets.

Block-based methods [25], [26] divide each frame into
multiple overlapped or non-overlapped small blocks, and then
model the background using the features of each block.
Compared with pixel-based methods, the image blocks can
capture more spatial distribution information, which makes
block-based methods insensitive to the local shift in the
background. However, the detection performance will largely
depend on the block-dividing technique, especially for small
moving targets.
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Fig. 2. The network architecture of N2DGAN. I n is the input nighttime image, and we divide it into M blocks (Bn
i , i = 1, 2, . . . , M) as the input of each

local generator. Then, the output of global generator and local generators are concatenated together. Finally, after two convolutional layers, the output is the
daytime image GθG (I n), where I d is the reference daytime image. More details about our model architecture are provided in the appendix.

III. NIGHTTIME TO DAYTIME GENERATIVE ADVERSARIAL

NETWORKS (N2DGAN)

To maintain spatial and temporal consistency in the gen-
eration process, our goal is to train a generation model G(·)
as in Fig.1 to transfer each frame I n

t of nighttime video to a
virtual daytime image with the same scene to the unique refer-
ence image I d except for the foreground region. Specifically,
this generation problem can be formulated as:

θ̂G = argmin
θG

1

N

N∑
t=1

L(GθG (I n
t ), I d ) (1)

where N is the number of training pairs, L(·, ·) denotes a
weighted combination of several loss components.

For the intent of learning the generation function G(·),
the GANs is applied [14] due to its powerful generating
ability. In particular, we propose a two path-way network
N2DGAN with a generator network GθG and a discriminator
network DθD parameterized by θG and θD , respectively. For
the discriminator network DθD , we will have the following
maximization problem given GθG :

θ̂D = argmax
θD∈D

EI d∼Pd
[DθD (I d )] − EI n

t ∼Pn [DθD (GθG (I n
t ))]

(2)

where Pd is the real daytime image distribution, and Pn is
the nighttime image distribution. Here we adopt the same
formulation for Eq.(2) as in WGAN [27], D is the set of
1-Lipschitz function, and weight clipping is utilized to enforce
the Lipschitz constraint. In essence, Eq.(1) and Eq.(2) are
the alternative optimizing of a min-max optimization problem
jointly parameterized by θG and θD .

A. Architecture

The overview on the network architecture of the proposed
N2DGAN is shown in Fig.2. To leverage the preserving

of background scene and foreground object(s) in gener-
ating virtual daytime image, a two-pathway generator is
proposed with global sub-network for maintaining back-
ground scene and M local sub-networks attending to cap-
ture local foreground information. As illustrated in Fig.2,
both the global and local sub-networks are designed in an
Encoder-Decoder manner as in most cases with modules of
norm Convolution-BatchNorm-Relu, and each layer is fol-
lowed by three residual blocks [28]. Following the archi-
tecture of “U-Net” adopted in [20], a fusion subnet is also
designed to connect both the “Encoder” and the “Decoder”
since symmetric layers can share some common information.
This will be helpful for facilitating the information flow of
foreground object between the input and output in the network
chain. The details of the model architecture are provided in
the Appendix.

B. Loss Function

The loss function L(·, ·) in Eq.(1) plays a significant role
in training GANs model. For an input nighttime image I n

t ,
several kinds of loss functions are exploited to make the
generated virtual daytime image GθG (I n

t ) retain most of the
image information such as structure, objects, and texture as in
the pre-specified reference image Id .

1) Adversarial Loss: To encourage the generated images
move towards the real daytime image manifold and generate
images with more details, the adversarial loss is first consid-
ered for distinguishing the generated image GθG (I n) from the
daytime image I d .

Ladv = 1

N

N∑
t=1

−DθD

(
GθG

(
I n
t

))
(3)

where N is the number of nighttime images in the training
dataset.
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Fig. 3. Multi-scale Bayes inference framework for foreground detection. In the training phase, phase, for input frame I n
t , multi-scale daytime images

[GθG (I n
t )]si , i = 1, 2, . . . Q, are generated, then we model the temporal distribution of each pixel of the generated image at each scale. D

θ
(si )
D

is discriminator

network for scale si . In the testing phase, that is, foreground detection phase, for the input frame T n
t , the pre-trained N2DGAN network outputs its corresponding

multi-scale daytime images [GθG (T n
t )]si , i = 1, 2, . . . Q. Then the multiple probabilities of each pixel belonging to the background at each scale are integrated

elegantly based on Bayes inference for detecting the foreground object.

2) Perceptual Loss: In order to minimize the high-level
perceptual and semantic differences between GθG

(
I n
t

)
and I d

while preventing unexpected overfitting coming from I d , we
follow the idea that minimizes the difference in convolutional
layer of a pre-trained network [29] between two images. The
motivation behind it lies in that the neural network pre-trained
by image classification task has already learnt effective rep-
resentation, which can be transferred into other tasks such
as our enhancement processing. Specifically, we define φi as
the activation of the i th convolutional layer of the pre-trained
network, and the perceptual loss is defined as:

L p = 1

C

C∑
i=1

1

Wi

1

Hi

Wi∑
x=1

Hi∑
y=1

(
[φi (GθG (I n

t ))]x,y − [φi (I d )]x,y

)2

(4)

where C is the number of convolutional layers, Wi and Hi

describe the dimensions of the respective feature maps within
the VGG network.

3) Pixel-Wise Loss: To facilitate further background model-
ing task with spatial consistency of intra-frame and pixel-wise
temporal consistency of inter-frame, the most widely used
pixel-wise MSE loss (Eq.(5)) and total variation loss (Eq.(6))
are also adopted.

Lmse = 1

W

1

H

W∑
i=1

H∑
j=1

(
I d
i, j − [GθG

(
I n
t

)]i, j

)2
(5)

Ltv =
W,H∑

i=1, j=1

√(
( Î d

t )i+1, j − ( Î d
t )i, j

)2 +
(
( Î d

t )i, j+1−( Î d
t )i, j

)2

(6)

where Î d
t denotes the generated virtual daytime image

GθG (I n
t ).

Since each of the loss functions mentioned above is pro-
vided with an unique view on characterizing the visual quality
of the generated virtual image, an intuitive way is to make
a combination of them. Thus, we have the final overall loss
function as:

L = λadv Ladv + λtv Ltv + λmse Lmse + λp L p (7)

where λadv , λtv , λmse, and λp are weights of the corresponding
terms, respectively.

IV. MULTI-SCALE BAYES INFERENCE FOR

FOREGROUND DETECTION

N2DGAN ensures that there is a detectable difference
between foreground object and background. All these char-
acters match the major premise of GMM, that the background
is more frequently visible than the foreground and that its vari-
ance is significantly slight. However, as we know, the neural
network has the properties of both randomness and uncertainty.
Thus, there exists inevitably pixel-wise difference between I d

i, j
and [GθG (I n)]i, j in generating GθG (I n), and it essentially can
be regarded as some kind of random noise arising from both
spatial and temporal domains. In other words, given the total
error value, this difference at pixel (i, j) may also occur at any
other pixels with equal probability. This case will be doomed
to bring some unexpected negative influence on pixel-level
background modeling.

To mitigate this issue, inspired by some works on
multi-scale multiplication for edge detection [37], [38] that
tend to yield significant localized detection, we extend
N2DGAN to a multi-scale generative model as shown in Fig.3
to facilitate the background modeling to be noise-free.
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A. Multi-Scale Generation

As illustrated in Fig.3, we reformulate the generation prob-
lem for background modeling as follows: to train a generator
network GθG parametrized by θG , which learns a mapping
function from the source domain �n of nighttime to the
target domain �d of daytime. For every input nighttime frame
I n
t ∈ �n , to generate a multi-scale set of images [GθG (I n

t )]si ,
i = 1, . . . . . . , Q, in daytime domain �d will be equivalent to:

ˆθG = 1

N
argmin

θG

N∑
t=1

Q∑
i=1

L([GθG (I n
t )]si , [I d ]si ) (8)

where N is the number of training pairs as before, and L(·, ·)
denotes the loss function as mentioned above. In addition,
we introduce Q adversarial discriminators to distinguish the
reference daytime image [I d ]si from the generated virtual
daytime image [GθG (I n

t )]si under scale si . Particularly, similar
to Eq.(2), in each generation task of different scales, the dis-
criminator network will be reformulated as:

θ̂
(si )
D = argmax

θ
(si )
D ∈D

E[I d ]si ∼Pd
[D

θ
(si )
D

([I d ]si )]

−EI n∼Pn [D
θ

(si )
D

([GθG (I n)]si )] (9)

It should be noted that both the generative network archi-
tecture and the discriminator architecture in Fig.3 are same
as those in Fig.2. But different from N2DGAN, more convo-
lutional layers are employed to generate multi-scale daytime
images.

B. Multi-Scale Bayes Inference Based on Scale Multiplication

N2DGAN enforces the sequence of generated virtual day-
time images GθG (I n

t ), t = 1, . . . , N , to be as approximated
closely as possible to the pre-specified unique reference frame
I d . The inescapable fact, however, is that there is certain dif-
ference between them, one is noise accompanied by the neural
network, the other part is the foreground region. To suppress
effectively noise coming from virtual daytime generation while
strengthening the discriminant of foreground object, a multi-
scale Bayes model is proposed to characterize pertinently the
temporal variation of background.

For each pixel I n
i, j , we use P(B | I n

i, j ) to serve as
the background model, denoting the probability of pixel
I n
i, j to be background. Given the multi-scale representations

[GθG (I n)]sk
i, j , k = 1, . . . , Q, for pixel I n

i, j , the background
model P(B | I n

i, j ) can be given with Bayes criterion by
Eq.(10). Here, �·� represents rounding down to the nearest

TABLE I

THE DETAILS OF OUR FOUR DATASETS

whole number. On the assumption that the generation of
virtual daytime images with different scales is independent
of each other, thus the background model given by Eq.(10),
as shown at the bottom of this page, will further reduce
to the following Eq.(11), as shown at the bottom of this
page. As we can see from Eq.(11), the background model
P(B | I n

i, j ) is equivalent to the multi-scale multiplication of
multiple background models at different scales. In addition,
for each background model P(B | [GθG (I n)]sk�i/2k−1�,� j/2k−1�),
k = 1, . . . , Q, a single gaussian model instead of GMM can
be simply applied as shown in Fig.3.

V. EXPERIMENTAL RESULTS

We evaluate the proposed background modeling approach
visually and quantitatively, by comparing with state-of-the-arts
and providing extensive ablation studies

A. Datasets and Experiment Settings

1) Datasets and Evaluation Metrics: Our work in this paper
mainly focuses on background modeling under nighttime
scene with low illumination. However, to the best of our
knowledge, there are no public open datasets to evaluate such a
task. For this reason, we collect several benchmark datasets by
a Canon IXY 210F video camera including indoor and outdoor
scenes with manually labeled ground truth. The details about
our four datasets, including Lab, Tree, Lake1, and Lake2,
are shown in Tab.I.1 For each dataset, the corresponding
pre-specified daytime images that serve as ground truth back-
ground frames are also provided. It is worth of noting that both
the ‘Lake’ and ‘Tree’ datasets were captured outdoor on windy

1The datasets and code of our method will be released at
https://github.com/anqier0468/N2DGAN.

P(B | I n
i, j ) = P(B | [GθG (I n)]s1

i, j , . . . , [GθG (I n)]sQ

�i/2Q−1�,� j/2Q−1�)P([GθG (I n)]s1
i, j , . . . , [GθG (I n)]sQ

�i/2Q−1�,� j/2Q−1� | I n
i, j ) (10)

P(B | I n
i, j ) =

Q∏
k=1

P(B | [GθG (I n)]sk�i/2k−1�,� j/2k−1�)P([GθG (I n)]sk�i/2k−1�,� j/2k−1� | I n
i, j )

∝
Q∏

k=1

P(B | [GθG (I n)]sk�i/2k−1�,� j/2k−1�) (11)
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TABLE II

QUANTITATIVE COMPARISON OF FOREGROUND DETECTION ACCURACY BY DIFFERENT METHODS

nights, and the ’Lab’ dataset is taken indoors where we control
the intensity of lighting by pulling curtains and switching
incandescent lights on purpose. Actually, these datasets are
much challenging for background modeling task since they
feature the undulation of lake, reflection of lights in the water,
leaves shaking, and illumination variation. In order to make a
quantitative evaluation, the foreground object(s) in the datasets
are also manually labeled. Following the previous works on
foreground detection, IoU is employed as our evaluation
metric [39].

2) Implementation Details: The training of the proposed
N2DGAN model is implemented on 2 NVIDIA TITAN Xp
GPUs. The first 300 frames of each nighttime video in Tab.I
paired with the corresponding daytime reference image are
used to train the model, and the remaining are for testing.
All of the images are downscaled to resolution of 256 × 256.
Specially, we split each image into multiple image blocks with
size 32 × 32, and then each block is used as the input of each
local generator subnet. Considering the computational effi-
ciency, only two scales are adopted, i.e., Q = 2, to eliminate
the influence of noise and spatial shift of background pixels.
Based on RMSProp, the mini-batch gradient descent method is
used with a batch size of 4 and a learning rate of 10−4. Since
WGAN [27] is used as the backbone of our generation model,
the weight need to be clampped to a fixed box (−0.01, 0.01)
after each gradient update to avoid gradient vanishing and
mode collapse problems during the learning process. In all
our experiments, we uniformly set the total training epoch
number to 30, and empirically set λadv = 10−1, λp = 10−5,
λmse = 10−1, and λtv = 10−3 in Eq.(7) to maintain the same
order of magnitude. Besides, the first 3 convolutional layers
of VGG network is used to calculate perceptual loss.

B. Performance Evaluation

1) Comparisons With State-of-the-Arts: We compare
the proposed method with state-of-the-arts on foreground

detection, including eight typical background modeling meth-
ods and four enhancement-based methods. Implementations
of all these methods are based on the BGSLibrary [40] with
default parameters. The quantitative comparison results on
3 sequences are shown in Tab.II. Obviously, our method
can always achieve the best performance. Specifically, for
sequences ’Tree’ and ’Lake2’, our method even outperforms
the state-of-the-art method SUBSENSE [33] by 75% and
44%, respectively. Fig.4 presents the qualitative comparison
results, which illustratively show that the proposed N2DGAN
performs better. This mainly lies in two facts: 1) com-
pared with the directly background modeling methods, gen-
erating daytime images makes the flatten pixel distribution
sharper and easier to detect foreground; 2) compared with
the enhancement-based methods, the unique daytime reference
frame in generative process ensures the inter-frame consistency
of the generated daytime images.

2) Stability Comparison: Consistency stability of successive
frames is of great importance for further background modeling.
For the t-th frame It�RW×H , we use the following metric to
measure the stability between It and its adjacent frame It+1.

st = Sim(It , It+1) (12)

where Sim(·, ·) denotes the distance between It and It+1.
Here, we adopt Kullback-Leibler Divergence, which represents
stronger stability if its value is close to 0. Fig.5 shows the
stability comparison of several representative methods on a
randomly selected sequence consisting of 200 consecutive
frames from the test set of three datasets. As we can see,
the result of our method (yellow line) is quite close to
real nighttime images (blue line), while both HE (red line)
and MSR (green line) show distinct difference from real
sequence. Particularly, the large fluctuation by MSR also
indicates that the pixel values between two adjacent frames
differ greatly, which is unfavorable for background modeling.
To sum up, with the joint constrain of spatial and temporal
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Fig. 4. Qualitative comparison of different foreground detection methods. (a) nighttime image, (b) groundtruth, (c) our method N2G-GAN, (d) GMG [35],
(e) ASOM [32], (f) FASOM [31], (g) LOBSTER [30], (h) GMM [4], (i) MCueBGS [41], (j) SUBSENSE [33], (k) MRF-UV [36], (l) HE [9]+GMM [4],
(m) MSR [8]+GMM [4], (n) HE [9]+SUBSENSE [33], (o) MSR [8]+SUBSENSE [33].

Fig. 5. Sequence stability comparison with HE, MSR and N2DGAN on Lab
(left), Tree (middle), and Lake1 (right) datasets.

Fig. 6. Foreground detection accuracy on Lake1 dataset with different levels
of noises.

consistency, our generation based method performs better than
enhancement-based method.

C. Robustness to Noise and Illumination Variation

Some extreme weather conditions such as rain, snow, and
fog usually bring great challenges to background modeling.
To demonstrate N2DGAN’s scalability under such environ-
ment, additive Gaussian noise is added to nighttime video
sequence to simulate extreme weather. We randomize the
noise standard deviation σ� {[0, 5] , [5, 10] , [10, 15] , [15, 20]}
separately for each testing example. As illustrated in Fig.6, the
behaviors are quantitatively different in all three datasets. This
demonstrates that our method is the only technique that man-
ages to perform well with different levels of noises. On two

randomly selected frames Lake1-13th and Lake1-158th, Fig. 7
and Fig. 8 present visually the comparison results with conven-
tional background modeling methods and enhancement based
methods, which clearly shows that the proposed N2DGAN
achieves the best performance.

For the experiments on evaluating the robustness to illumi-
nation variation, Fig. 9 illustrates the comparison results on
the indoor nighttime dataset Lab with illumination variation.
As we can see from Fig.9, the N2DGAN model is much more
insensitive to the instantaneous changes in light compared with
other state-of-the-art background modeling methods. Here,
the enhancement result based on HE (Fig. 9(b)) is only utilized
to clarify the foreground object since it is not easy to find the
ground truth in dark.

Two factors must be credited for our high resilience to
noise and illumination change. The first originates from our
model design, which allows noisy pixel to be outfitting to
the reference background image. The second lies in our
background model on successive multi-scale images, which
is more robust to noise by hierarchical Bayes modeling.

D. Ablation Study

1) Global and Local Consistency Evaluation: To verify the
effectiveness of combining both local and global consistency
together in our model, we first perform foreground detection
when using global subnetwork alone, called N2DGAN(global).
As observed from Fig.10, small targets in nighttime images
are lost in this case. Meanwhile, when using local sub-
net alone, called N2DGAN(local), the detected foreground
objects are incomplete on the edge of patches, since there
exists blocking-artifact problem caused by patch enhance-
ment. Additionally, quantitative comparison results shown
in Tab.II (bottom) demonstrate that our baseline improves
detection accuracy by more than 10% and 5% compared with
N2DGAN(global) and N2DGAN(local), respectively.

Evaluation on Multi-scale Bayes modeling To further
demonstrate the effectiveness of our background modeling on
successive multi-scale images of daytime domain, we attempt
to perform on a single scale generated images [GθG (In)]s1 .
As illustrated in Fig.11, due to the fact that multi-scale
bayes model can suppress the noise caused by network, then
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Fig. 7. Performance evaluation of robustness to noise on Lake1-13th. (a) The input nighttime image. (b) Groundtruth. (c) N2DGAN. (d) GMG
[35], (e) IMBGS [34]. (f)ASOM [32], (g)FASOM [31], (h)LOBSTER [30], (i)GMM [4], (j)SUBSENSE [33], (k)MRF-UV [36], (l) HE [9]+GMM [4],
(m) MSR [8]+GMM [4], (n) HE [9]+SUBSENSE [33], (o) MSR [8]+SUBSENSE [33].

Fig. 8. Performance evaluation of robustness to noise on Lake1-158th. (a) The input nighttime image. (b) Groundtruth. (c) N2DGAN. (d) GMG [35],
(e) IMBGS [34]. (f)ASOM [32], (g)FASOM [31], (h)LOBSTER [30], (i)GMM [4], (j)SUBSENSE [33], (k)MRF-UV [36], (l) HE [9]+GMM [4],
(m) MSR [8]+GMM [4], (n) HE [9]+SUBSENSE [33], (o) MSR [8]+SUBSENSE [33].

Fig. 9. Performance evaluation of robustness to illumination variation. (a) nighttime image, (b) HE, (c) N2DGAN, (d) GMG [35], (e) ASOM [32],
(f) FASOM [31], (g) LOBSTER [30], (h) GMM [4], (i) MCueBGS [41], (j) SUBSENSE [33], (k) MRF-UV [36], (l) HE [9]+GMM [4], (m) MSR [8]+GMM [4],
(n) HE [9]+SUBSENSE [33], (o) MSR [8]+SUBSENSE [33].

our baseline N2DGAN makes the foreground region more
remarkable.

E. Time Complexity Analysis
For a background model, the computational complexity is

one of the key issues worthy of attention. For our N2DGAN
model, its computational complexity mainly consists of two

parts, i.e., virtual daytime image generation and foreground
detection. In the foreground detection stage, since our model
holds only a single gaussian model which can be off-line
available and without need for online model updating, thus
the time complexity in this stage is much lower than the
traditional GMM and can be negligible compared with the
one in generation stage.
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Fig. 10. Comparison of foreground detection results using global subnet
and local subnet independently. (a) Input nighttime image. (b) Ground truth.
(c) N2DGAN. (d) N2DGAN(global). (e) N2DGAN(local).

Fig. 11. Comparison of foreground detection results using multi scales
and single sale. (a) nighttime image. (b) Groundtruth. (c) Generated image
[GθG (In)]s1 . (d) N2DGAN. (e) The detection result using single scale s1.

TABLE III

TIME COMPLEXITY ANALYSIS OF GENERATION PROCESS

By comparison, to generate a virtual daytime image will
occupy most of the time with a frame rate of 8 fps without
any code optimisation. As shown in Table III, the frame rate
of N2DGAN(local) to generate 8 × 8 blocks of local sub-
images2 is around 10 fps, which is much more slowly than
N2DGAN(global) with a frame rate of 56 fps. However,
considering that we can generate each block of local virtual
sub-image in parallel, the frame rate of N2DGAN(local) will
dramatically increased, approximating around 640 fps in an
ideal situation. It means that the global generation process with
56 fps will dominate the overall computational complexity of

2For an input nighttime image, it is divided into 8 × 8 blocks and then
the corresponding local generation sub-network is trained on each block to
generate a local sub-image. For details please refer to Section III.

TABLE IV

ARCHITECTURE OF THE LOCAL GENERATOR SUB-NETWORK

TABLE V

ARCHITECTURE OF THE GLOBAL GENERATOR SUB-NETWORK

the virtual daytime image generation. By this way, the need
for online real-time foreground object detection can be met.

VI. CONCLUSION

For the challenge of background modeling under daytime
scene, an innovative N2DGAN model is proposed, which
paves a new way completely different from the existing
methods. To the best of our knowledge, this is the first time
to introduce GANs based deep learning for this practical
problem. As an unsupervised model, N2DGAN is provided
with good scalability and practical significance.

As for the time complexity of N2DGAN, it takes about
0.125 seconds (8 fps) for each frame. Considering each local
generation model can be implemented in parallel, the proposed
N2DGAN could be highly parameterizable. Besides, some
model compression works [42], [43] can also be feasible
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solutions for network acceleration. It is also worth noting that
we have assumed that the images in the training set is free of
foreground objects. To overcome this limitation, we will try to
extend this method to deal with the situation that the images
in the training set may contain some foreground objects.

APPENDIX

The detailed structures of the global sub-network and local
sub-network are provided in Table IV and Table V, respec-
tively. Each convolution layer is followed by 3 residual block
[28]. Then we simply concatenate the output from each local
generator and the global generator to produce a fused feature
tensor and then feed it to the successive convolution layers to
generate the final output.
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