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ABSTRACT

The popularity and promotion of depth maps have brought new

vigor and vitality into salient object detection (SOD), and a mass of

RGB-D SOD algorithms have been proposed, mainly concentrating

on how to better integrate cross-modality features from RGB im-

age and depth map. For the cross-modality interaction in feature

encoder, existing methods either indiscriminately treat RGB and

depth modalities, or only habitually utilize depth cues as auxiliary

information of the RGB branch. Different from them, we reconsider

the status of two modalities and propose a novel Cross-modality

Discrepant Interaction Network (CDINet) for RGB-D SOD, which

differentially models the dependence of two modalities according

to the feature representations of different layers. To this end, two

components are designed to implement the effective cross-modality

interaction: 1) the RGB-induced Detail Enhancement (RDE) module

leverages RGB modality to enhance the details of the depth fea-

tures in low-level encoder stage. 2) the Depth-induced Semantic

Enhancement (DSE) module transfers the object positioning and in-

ternal consistency of depth features to the RGB branch in high-level

encoder stage. Furthermore, we also design a Dense Decoding Re-

construction (DDR) structure, which constructs a semantic block by

combining multi-level encoder features to upgrade the skip connec-

tion in the feature decoding. Extensive experiments on five bench-

mark datasets demonstrate that our network outperforms 15 state-

of-the-art methods both quantitatively and qualitatively. Our code

is publicly available at: https:// rmcong.github.io/proj_CDINet.html.

CCS CONCEPTS

• Computing methodologies→ Interest point and salient re-

gion detections;.
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Figure 1: Mode (a) is a unidirectional interaction which

regards the depth stream as auxiliary information; Mode

(b) represents an undifferentiated bidirectional interaction,

and it treats two modalities as equal; Mode (c) is the pro-

posedmode which conducts discrepant cross-modality guid-

ance. In (d), ATSA [39], ASIF [25] and Ours correspond to

method of modes (a), (b) and (c) in a difficult scene, respec-

tively.

ACM Reference Format:

Chen Zhang, Runmin Cong, Qinwei Lin, Lin Ma, Feng Li, Yao Zhao, Sam

Kwong. 2021. Cross-modality Discrepant Interaction Network for RGB-

D Salient Object Detection. In Proceedings of the 29th ACM International

Conference onMultimedia (MM ’21), October 20–24, 2021, Virtual Event, China.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3474085.3475364

1 INTRODUCTION

Inspired by the human visual attention mechanism, salient object

detection (SOD) aims to detect the most attractive objects or regions

in a given scene, which has been successfully applied to abundant

tasks [1, 6, 8, 11, 42]. In fact, in addition to the color appearance,

texture detail, and physical size, people can also perceive the depth

of field, thereby generating the stereo perception through the binoc-

ular vision system. In recent years, thanks to the rapid development

of consumer depth cameras such as Microsoft Kinect, we are able

to conveniently acquire the depth map to depict a scene. Compared

with RGB image which provides rich color and texture information,

depth map can exhibit the geometric structure, internal consis-

tency, and illumination invariance. With the help of depth map, the

SOD model can better cope with some challenging scenes, such as

low-contrast and complex background. Therefore, for the past few

years, the research on salient object detection of RGB-D images
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has received widespread attention. As we all know, RGB image

and depth map belong to different modalities, thus we need some

sophisticated designs to better use of the advantages of both to

achieve RGB-D SOD. Therefore, the pivotal and hot issue in RGB-D

SOD is how to better integrate cross-modality features. The lim-

ited expression ability of traditional models based on hand-crafted

features [7, 9, 10, 12, 16, 22, 31] makes their performance always

unsatisfactory, especially in complex scenes. With the popularity

of deep learning in recent years, plenty of powerful cross-modality

integration methods based on convolutional neural network (CNN)

have been proposed [4, 18, 21, 26, 28, 30, 40, 43].

For the information interaction between RGB and depth modal-

ities in feature encoder, the existing mainstream methods can be

roughly divided into two categories according to their interaction

directions: (i) Unidirectional interaction mode shown in Figure 1(a),

which uses the depth cues as auxiliary information to supplement

the RGB branch [4, 28, 33]. (ii) Undifferentiated bidirectional in-

teraction shown in Figure 1(b), which treats RGB and depth cues

equally to achieve cross-modality interaction [18, 21, 30]. However,

in this paper, we raise a new question: since these two modalities

have their own strong points, can we design a discrepant interaction

mode for RGB-D SOD based on their roles to make full use of the

advantages of both? Observing the Figure 1(d), we may be able to

find the answer: (1) Depth map has relatively distinct details (such

as boundaries) for describing the salient objects, which is beneficial

to straightforwardly learn the effective saliency-oriented features.

However, when it comes to some special scenes, depth map can not

distinguish different object instances at the same depth level only

by virtue of its own characteristics, such as the bottle and fingers in

Figure 1(d). At this point, the RGB branch can use its rich appear-

ance detail information to enhance the depth feature learning. (2)

More affluent semantic information can be extracted from RGB im-

age than the depth map, but the complex background interference

or illumination variation influence may cause the salient objects to

be flawed. By contrast, the depth features can provide better guid-

ance for salient object positioning and internal consistency, thereby

enhancing the semantic representation of the RGB modality.

Based on the above observations, we propose a cross-modality

discrepant interaction network (CDINet) for RGB-D salient object

detection, which clearly models the dependence of two modali-

ties according to the manifestations of features in different layers.

Specifically, we first employ an RGB-induced detail enhancement

(RDE) module in the first two layers of the encoding network,

which can supplement more detailed information to enhance the

low-level depth features. Then, a depth-induced semantic enhance-

ment (DSE) module is designed for high-level feature encoding,

which utilizes the saliency positioning and internal consistency of

high-level depth cues to enhance the RGB semantics. Thanks to this

differentiated interaction mode, RGB and depth branches can com-

plement each other, give full play to their respective advantages,

and finally generate more accurate semantic representations.

In addition, for the encoder-decoder network, with the deep-

ening of the convolution process, we can obtain global semantic

representation in the encoding stage, but some spatial details will

be lost, thereby only utilizing the supervision of ground truth in

the decoder stage cannot achieve a perfect reconstruction result.

In order to highlight and restore the spatial domain information

in the feature decoding, the existing SOD models introduce the

encoder features through skip connection [28, 30]. However, they

only introduce the information of the corresponding encoder layer

through direct addition or concatenation operation, which do not

make full use of the encoder features of different layers. To tackle

this problem, we propose a dense decoding reconstruction (DDR)

structure, which generates a semantic block by densely connecting

the higher-level encoding features to provide more comprehensive

semantic guidance for the skip connection in the feature decod-

ing. Furthermore, we can obtain a more accurate and complete

saliency prediction. As can be seen from the visualization results

in Figure 1(d), the ATSA [39] method (unidirectional interaction)

cannot well suppress the interference caused by the depth map,

while the ASIF [25] method ( undifferentiated bidirectional inter-

action) fails to completely detect the salient object. By contrast,

our proposed CDINet can accurately detect the salient object with

complete structure and clear background.

The main contributions of this paper are summarized as follows:

• We propose an end-to-end Cross-modality Discrepant In-

teraction Network (CDINet), which differentially models

the dependence of two modalities according to the feature

representations of different layers. Our network achieves

competitive performance against 15 state-of-the-art meth-

ods on 5 RGB-D SOD datasets. Moreover, the inference speed

for an image reaches 42 FPS.

• We design an RGB-induced Detail Enhancement (RDE) mod-

ule to transfer detail supplement information from RGB

modality to depth modality in low-level encoder stage, and

a Depth-induced Semantic Enhancement (DSE) module to

assist RGB branch in capturing clearer and fine-grained se-

mantic attributes by utilizing the advantage of positioning

accuracy and internal consistency of high-level depth fea-

tures.

• We design a Dense Decoding Reconstruction (DDR) struc-

ture, which generates a semantic block by leveraging multi-

ple high-level encoder features to upgrade the skip connec-

tion in the feature decoding.

2 RELATEDWORK

RGB-D Salient Object Detection. In recent years, a large num-

ber of RGB-D SOD models based CNN have shown extraordinary

performance, and these works focus on how to design better in-

tegration strategies. However, most researchers are accustomed

to treat the two modalities as equal, and we call them undifferen-

tiated bidirectional interaction mode. For example, Fu et al. [18]

introduced a siamese network for joint learning and designed a

densely-cooperative fusion strategy to discover complementary fea-

tures. Pang et al. [30] integrated the cross-modal features through

densely connected structure, then established a hierarchical dy-

namic filtering network by using fusion features. Huang et al. [21]

proposed a cross-modal refinementmodule to integrate cross-modal

features, then a multi-level fusion module was designed to fuse the

features of each level followed bottom-up pathway. In addition,

some methods take depth map as auxiliary information for RGB

branch, forming the unidirectional interaction mode. Piao et al. [33]

proposed a depth distiller to transfer the depth knowledge from
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depth stream to RGB stream. Liu et al. [28] designed a residual

fusion module to integrate the depth decoding features into RGB

branch in decoding stage. Chen et al. [4] considered depth map

contains much less information than RGB image, then proposed

a lightweight network to extract depth stream features. Different

from the above methods, we reconsider the status of RGB modality

and depth modality in RGB-D SOD task, and propose a discrepant

interaction structure to achieve more oriented and differentiated

cross-modality interaction.

Attention Mechanism. As a form of efficient resource alloca-

tion, attention mechanism has been widely applied to plenty of

computer vision tasks. Spatial attention mechanism [38] makes

the network pay attention to the area of interest. Channel atten-

tion mechanism [20] learns the importance of each channel. Self-

attention mechanism [36] captures long-distance dependency rela-

tionship. There are also several works that develop mixed attention

mechanisms, such as CBAM [37] and dual-attention [17]. In this

paper, we employ spatial-wise and channel-wise attention in RDE

and DSE modules. Moreover, we focus more on the cross-modality

application of attention, that is, the attention map generated by

one modality is utilized to enhance another modality features, so

as to achieve more effective cross-modality guidance in the form of

attention.

Skip Connection. Long-range skip connection is a measure to

recover image details in pixel-level prediction tasks, and it has been

equipped with almost all RGB-D SOD models. For models where

cross-modal interaction occurs in encoder, skip connection is pre-

sented as a direct feature-wise addition or concatenation, i.e., [28]

and [30]. For other networks which fuse cross-modality features

in decoder, proprietary modules are often designed to incorporate

skip features (also known as side outputs). For example, Li et al.[26]

proposed a cross-modality modulation and selection block to fuse

side outputs in a coarse-to-fine way. Piao et al.[32] designed a depth

refinement block to integrate complementary multi-level RGB and

depth features. In this work, we boost performance by a simple but

effective decoding structure that densely connects the higher-level

encoder features to conduct skip connection.

3 PROPOSED METHOD

3.1 Overview

Motivation. Previous studies have confirmed the positive effect of

RGB and depth information interaction in SOD tasks [25, 26, 28]. In

this paper, we seriously reconsider the status of RGB modality and

depth modality in RGB-D SOD task. Different from the previous

unidirectional interaction shown in Figure 1(a) and undifferentiated

bidirectional interaction shown in Figure 1(b), we believe that the

interaction of the two modalities information should be carried out

in a separate and discrepantmanner. The low-level RGB features can

help the depth features to distinguish different object instances at

the same depth level, while the high-level depth features can further

enrich the RGB semantics and suppress background interference.

Therefore, a perfect RGB-D SOD model should give full play to the

advantages of each modality, and simultaneously utilize another

modality to make up for itself to avoid causing interference. To this

end, we propose a cross-modality discrepant interaction network to

explicitly model the dependence of two modalities in the encoder

stage according to the feature representations of different layers,

which selectively utilizes RGB features to supplement the details

for depth branch, and transfers the depth features to RGB modality

to enrich the semantic representations.

Architecture. Figure 2 illustrates the overall architecture of the

proposed CDINet for RGB-D SOD task. It is composed of three

parts, i.e., the RGB-induced detail enhancement (RDE) module,

the depth-induced semantic enhancement (DSE) module, and the

dense decoding reconstruction (DDR) structure. On the whole, the

network follows an encoder-decoder architecture, including two

encoders regarding RGB and depth modalities and one decoder.

The two encoders both adopt VGG16 [35] network, discarding the

last pooling and fully-connected layers, as the backbone to extract

the corresponding multi-level feature representations and achieve

cross-modality information interaction. The extracted RGB and

depth features from the backbone are denoted as 𝑓 𝑖𝑟 and 𝑓 𝑖
𝑑
respec-

tively, where 𝑟 and 𝑑 represent the RGB and depth branches, and

𝑖 ∈ {1, 2, ..., 5} indexes the feature level. Specifically, in the low-level
feature encoding stage (i.e., the first two layers of backbone), we

design an RDE module to transfer detail supplement information

from RGB modality to depth modality, thereby enhancing the dis-

tinguishability representation of depth features. For the high-level

encoding features, the DSE module utilizes the advantage of po-

sitioning accuracy and internal consistency of depth features to

assist RGB branch in capturing clearer and fine-grained semantic

attributes, thereby promoting the object structure and background

suppression. Besides, for the convolution-upsample decoding in-

frastructure, we upgrade the traditional skip connection way by

constructing a DDR structure, that is, utilizing higher-level skip

connection features as guidance information to achieve more ef-

fective encoder information transmission. The prediction result

generated by the last convolutional layer of decoder will be used

as the final saliency output.

3.2 RGB-induced Detail Enhancement

Compared with the RGB image, depth map puts aside complex

texture information and can intuitively describe the shape and po-

sition of the salient objects. In this way, for the low-level encoder

features that contain more detailed information (such as boundaries

and shapes), depth features can provide more straightforward and

instructive representations than RGB features, which are beneficial

to the initial feature learning. However, depth information is not a

panacea. For example, different object instances adjacent to each

other have the same depth value, such as the bottle and fingers

in Figure 1(d), which makes them manifest as indivisible objects

in the depth map. But in the corresponding RGB image, these ob-

jects can be distinguished by the color difference in most cases.

Hence, these ambiguous regions burden the network training, and

previous models have confirmed the difficulty of predicting such

samples. To address this dilemma, we design an RGB-induced detail

enhancement module to reinforce and supplement depth modality

through the RGB features in low-level layers. By introducing the

detail guidance of RGB branch at an early stage, more information

can be used in the feature feedforward process to handle these
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Figure 2: The overall pipeline of the proposed CDINet. Our CDINet follows an encoder-decoder architecture, which realizes the

discrepant interaction and guidance of cross-modality information in the encoding stage. The framework mainly consists of

three parts: 1) RGB-induced detail enhancement module. It achieves depth feature enhancement by transmitting the detailed

supplementary information of the RGB modality to the depth modality. 2) Depth-induced semantic enhancement module.

Depth features provide better positioning and internal consistency to enrich the semantic information of RGB features. 3)

Dense decoding reconstruction structure. It densely encodes the encoder features of different layers to generatemore valuable

skip connection information, which is shown in the top right box marked B of this figure. The backbone of our network in

this figure is VGG16 [35], and the overall network can be trained efficiently as an end-to-end system.

hard cases. The detailed architecture is shown in the bottom left of

Figure 2.

To be specific, we first adopt two cascaded convolutional layers

to fuse the underlying visual features of two modalities. The first

convolutional layer with the kernel size of 1 × 1 is used to reduce

the number of feature channels, and the second convolutional layer

with the kernel size of 3 × 3 achieves more comprehensive feature

fusion, thereby generating the fusion feature pool 𝑓𝑝𝑜𝑜𝑙 :

𝑓 𝑖𝑝𝑜𝑜𝑙 = 𝑐𝑜𝑛𝑣3 (𝑐𝑜𝑛𝑣1 ( [𝑓
𝑖
𝑟 , 𝑓

𝑖
𝑑 ])), (1)

where 𝑖 ∈ {1, 2} indexes the low-level encoder feature layer, [·, ·]
denotes the channel-wise concatenation operation, and 𝑐𝑜𝑛𝑣𝑛 (·) is
a convolutional layer with the kernel size of 𝑛×𝑛. The advantage of
generating 𝑓𝑝𝑜𝑜𝑙 instead of transferring the RGB features directly

to the depth branch is that the common detail features of two

modalities can be enhanced and irrelevant features can beweakened

in this process.

Then, in order to cogently provide the useful information re-

quired by the depth features, we need to further filter the RGB

features from the depth perspective. We use a series of operations

on the depth features, including a maxpooling layer, two convolu-

tional layers, and a sigmoid function, to generate a spatial attention

mask as suggested by [38]. Note that for the two serial convolutional

layers, we use a larger convolution kernel size (i.e., 7×7) to perceive

the important detail regions in a large receptive field. Finally, multi-

plying the mask and feature pool 𝑓𝑝𝑜𝑜𝑙 to reduce the introduction of
irrelevant RGB features, thereby obtaining the required supplement

information from the perspective of depth modality. The entire
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process can be described as:

𝑓 𝑖𝑜𝑢𝑡 = 𝜎 (𝑐𝑜𝑛𝑣7 (𝑐𝑜𝑛𝑣7 (𝑚𝑎𝑥𝑝𝑜𝑜𝑙 (𝑓
𝑖
𝑑 )))) � 𝑓

𝑖
𝑝𝑜𝑜𝑙 + 𝑓

𝑖
𝑑 , (2)

where𝑚𝑎𝑥𝑝𝑜𝑜𝑙 (·) and 𝜎 (·) denote the maxpooling operation along

channel dimension and sigmoid function respectively, and � rep-

resents element-wise multiplication. The features 𝑓 𝑖𝑜𝑢𝑡 (𝑖 ∈ {1, 2})
will be used as the input of the next layer in depth branch. Note

that, since the detail features in the depth branch are more intuitive

and distinct, we choose them as skip connection features in the

first two layers for decoding.

3.3 Depth-induced Semantic Enhancement

In the high-level layers of encoder stage, the learned features of

the network contain more semantic information, such as categories

and relationships. For an RGB image, because it contains rich color

appearance and texture content, its semantic information is also

more comprehensive than depth modality. However, because of

the relatively simple structure and data characteristics of the depth

map, the learned high-level semantic features have better salient

object positioning, especially in the suppression of the background

regions, which is exactly what RGB high-level semantics require.

Therefore, we design the depth-induced semantic enhancement

module in the high-level encoder stage to enrich the RGB semantic

features with the help of the depth modality. However, considering

the simple fusion strategies (e.g., direct addition or concatenation)

cannot effectively integrate cross-modality features. In this paper,

we employ two types of interactive patterns to roundly carry out

cross-modality features fusion, i.e., attention level and feature level.

The detailed architecture is shown in the bottom right of Figure 2.

First, we learn an attention vector 𝑆𝑤𝑒𝑖𝑔ℎ𝑡 ∈ R1×ℎ×𝑤 from the

depth features to guide RGB modality to focus on the region of

interest in a spatial attention [38] manner, where the ℎ and𝑤 repre-

sent the height and width of feature map, respectively. On the one

hand, it helps to reinforce salient regions that are already recog-

nized. On the other hand, it also allows the RGB branch to focus on

information that is being ignored or incorrectly emphasized. This

process can be formulated as:

𝑆𝑤𝑒𝑖𝑔ℎ𝑡 = 𝜎 (𝑐𝑜𝑛𝑣3 (𝑚𝑎𝑥𝑝𝑜𝑜𝑙 (𝑓
𝑖
𝑑 ))), (3)

𝑓 𝑖𝑟𝑠 = 𝑆𝑤𝑒𝑖𝑔ℎ𝑡 � 𝑓
𝑖
𝑟 , (4)

where 𝑓 𝑖
𝑑
denotes the high-level encoder features of the depth

branch, 𝑓 𝑖𝑟 is the high-level RGB features from the backbone, 𝑓 𝑖𝑟𝑠
represents the RGB encoder features enhanced by the spatial at-

tention of depth features 𝑓 𝑖
𝑑
, and 𝑖 ∈ {3, 4, 5} indexes the high-level

encoder feature layer. In addition, high-level features usually have

abundant channels, so we use the channel attention [20] to model

the importance relationship of different channels and learn more

discriminative features. Concretely, we learn the weight vector

𝐶𝑤𝑒𝑖𝑔ℎ𝑡 ∈ R𝑐×1×1 through a global average pooling (𝐺𝐴𝑃) layer,
two fully connected layers (𝐹𝐶) and a sigmoid function, in which

the 𝑐 denotes the number of channels in feature map. The final

attention-level guidance is formulated as:

𝐶𝑤𝑒𝑖𝑔ℎ𝑡 = 𝜎 (𝐹𝐶 (𝐺𝐴𝑃 (𝑓
𝑖
𝑟𝑠 ))), (5)

𝐷𝑖
𝑎𝑡𝑡 = 𝐶𝑤𝑒𝑖𝑔ℎ𝑡 � 𝑓

𝑖
𝑟𝑠 , (6)

where 𝐷𝑖
𝑎𝑡𝑡 denotes the attention-level RGB enhanced features.

As for guidance at the feature level, we use the pixel-wise addi-

tion operation to directly fuse the features of two modalities, which

can strengthen the internal response of salient objects and obtain

better internal consistency. It should be noted that we use cascaded

channel attention [20] and spatial attention [38] mechanisms to

enhance the depth features and produce the feature-level enhanced

features 𝐷𝑖
𝑎𝑑𝑑

. Therefore, the features that eventually flow into the

next layer of the RGB branch can be expressed as:

𝑓 𝑖𝑜𝑢𝑡 = 𝐷
𝑖
𝑎𝑡𝑡 + 𝐷

𝑖
𝑎𝑑𝑑 . (7)

Again, the enhanced features 𝑓 𝑖𝑜𝑢𝑡 (𝑖 ∈ {3, 4, 5}) of RGB branch will

be introduced into the decoder stage to achieve saliency decoding

reconstruction.

3.4 Dense Decoding Reconstruction

In the feature encoding stage, we learn the multi-level discrimi-

native features through the discrepant guidance and interaction.

The decoder is dedicated to learning the saliency-related features

and predicting the full-resolution saliency map. During the fea-

ture decoding, skip connection that introduces encoding features

into the decoder has been widely used in the existing SOD mod-

els [5, 24, 28, 30]. However, these methods only establish the rela-

tionship between the corresponding encoding and decoding layers,

but ignore the different positive effects of different encoding fea-

tures. For example, the top-layer encoding features can provide

semantic guidance for each decoding layer. Consequently, we de-

sign a dense decoding reconstruction structure to more fully and

comprehensively introduce skip connection guidance. In Figure 2,

we show the specific implementation plan in the top right box.

To be specific, the 𝑓 𝑖𝑜𝑢𝑡 of each layer in the encoding stage con-

stitutes a skip connection features list. For convenience of distinc-

tion, we remark them as the skip connection features 𝑓 𝑖
𝑠𝑘𝑖𝑝

(𝑖 ∈

{1, 2, 3, 4, 5}). Then, before the combination of decoding features

and skip connection features of each layer, we densely connect the

higher-level encoder features to generate a semantic block 𝐵, which
is used to constrain the introduction of the skip connection infor-

mation of the current corresponding encoder layer. The semantic

block 𝐵 is defined as follows:

𝐵𝑖 = 𝑐𝑜𝑛𝑣3 (𝑐𝑜𝑛𝑣1 ( [𝑢𝑝 (𝑓
𝑖+1
𝑠𝑘𝑖𝑝 ), ..., 𝑢𝑝 (𝑓

5
𝑠𝑘𝑖𝑝 )])), (8)

where 𝑢𝑝 (·) denotes the up-sampling operation via bilinear inter-

polation, which reshapes 𝑓
𝑗
𝑠𝑘𝑖𝑝

(𝑖 < 𝑗 ≤ 5) to same resolution with

𝑓 𝑖
𝑠𝑘𝑖𝑝

.

Then, with the semantic block, we adopt element-wisemultiplica-

tion to eliminate redundant information, and a residual connection

to preserve the original information, thereby generating the final

skip connection features 𝐹 𝑖
𝑠𝑘𝑖𝑝

:

𝐹 𝑖𝑠𝑘𝑖𝑝 = 𝐵𝑖 � 𝑓 𝑖𝑠𝑘𝑖𝑝 + 𝑓 𝑖𝑠𝑘𝑖𝑝 , (9)

where 𝑓 𝑖
𝑠𝑘𝑖𝑝

denotes the current corresponding skip connection

features. In this dense way, the higher-level encoder features work

as a semantic filter to achieve more effective information selection

of skip connection features, thereby effectively suppressing redun-

dant information that may cause anomalies in the final saliency
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Figure 3: Visual comparisons with other state-of-the-art RGB-D methods in some representative scenes.

prediction. The obtained 𝐹 𝑖
𝑠𝑘𝑖𝑝

is combined with the decoding fea-

tures of previous layer to gradually restore image details through

up-sampling and successive convolution operations. Finally, the

decoding features of the last layer are used to generate the predicted

saliency map via a sigmoid activation.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metrics

BenchmarkDatasets. Five popular RGB-D SODbenchmark datasets

are employed to evaluate the performance of the proposed model.

The NLPR dataset [31] obtained by a Microsoft Kinect contains

1000 pairs of RGB images and depth maps in indoor and outdoor

locations. The NJUD dataset [22] consists of 1985 RGB images and

corresponding depth maps, which are collected from 3D movies,

the Internet, and stereo photographs. The DUT dataset [32] in-

cludes 1200 indoor and outdoor complex scenes paired with corre-

sponding depth maps. The STEREO dataset [29] collects 797 stereo-

scopic images from Image gallery on the web, and obtains the

corresponding depth maps through left-right view estimation. The

LFSD dataset [27] includes 100 RGB-D images via a light field cam-

era. Following [26, 33], we adopt 2985 images as our training data,

including 1485 samples from NJUD, 700 samples from NLPR, and

800 samples from DUT, and all the remaining images are used as

testing.

Evaluation metrics. We adopt four commonly used metrics in

SOD task to quantitatively evaluate the performance. P-R curve

describes the relationship between precision and recall, and the

closer to the upper right, the better the algorithm performance.

F-measure [29] indicates the weighted harmonic average of pre-

cision and recall by comparing the binary saliency map with ground

truth:

𝐹𝛽 =
(𝛽2 + 1) · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (10)

where 𝛽2 is set to 0.3 to emphasize the precision.

MAE score [6] calculates the difference pixel by pixel between

the saliency map 𝑆 and ground truth 𝐺 :

𝑀𝐴𝐸 =
1

𝐻 ×𝑊

𝐻∑

𝑦=1

𝑊∑

𝑥=1

|𝑆 (𝑥,𝑦) −𝐺 (𝑥,𝑦) |, (11)

where 𝐻 and𝑊 are the height and width of the original image,

respectively.

S-measure [14] evaluates the object-aware (𝑆𝑜 ) and region-aware
structural (𝑆𝑟 ) similarity between the predicted saliency map and

ground truth, which is defined as:

𝑆 = 𝛼 ∗ 𝑆𝑜 + (1 − 𝛼) ∗ 𝑆𝑟 , (12)

where 𝛼 is set to 0.5 for balancing the contributions of two terms.

4.2 Implementation Details

We implement the proposed network using Pytorch framework and

is accelerated by an NVIDIA GeForce RTX 2080Ti GPU, and also

implement our network by using the MindSpore Lite tool1. All the

training and testing images are resized to 256 × 256, and the depth

map is simply copied to three channels as input. During training,

we initialize the parameters of backbone by the pre-trained model

on ImageNet [13], and the other filters are initialized as the Pytorch

default settings. Then, to avoid overfitting, we use random flipping

and rotating to augment the training samples. Moreover, we apply

the usual binary cross-entropy loss function to optimize the pro-

posed network, and the Adam algorithm is used to optimize our

network with the batch size of 4 and the initial learning rate of 1e-4

which is divided by 5 every 40 epochs. The model can be trained in

an end-to-end manner without any pre-processing (e.g., HHA [19]

for depth map) or post-processing (e.g., CRF [23]) techniques. It

takes about 5 hours to obtain the final model for 100 epochs. When

testing, the inference time for an image with size of 256 × 256 is

0.023 second (42 FPS) via the aforementioned GPU.

1https://www.mindspore.cn/
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Table 1: Quantitative comparison results in terms of S-measure (𝑆𝛼 ), max F-measure (𝐹𝛽 ) and MAE score on five benchmark

datasets. ↑ & ↓ denote higher and lower is better, respectively. Bold number on each line represents the best performance.

MMCI TAN CPFP DMRA FRDT SSF S2MA A2dele JL-DCF PGAR DANet cmMS BiANet D3Net ASIFNet CDINet

[3] [2] [44] [32] [41] [40] [28] [33] [18] [4] [45] [26] [43] [15] [25] Ours

2019 2019 2019 2019 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2021 -

PR TIP CVPR ICCV ACM MM CVPR CVPR CVPR CVPR ECCV ECCV ECCV TIP TNNLS TCyb -

N
L
P
R

𝐹𝛽 ↑ .8149 .8631 .8675 .8749 .8976 .8986 .9017 .8815 .8915 .9153 .9013 .9031 .8764 .8969 .8907 .9162

𝑆𝛼 ↑ .8557 .8861 .8884 .8892 .9129 .9141 .9155 .8979 .9097 .9297 .9152 .9176 .9000 .9117 .9079 .9273

𝑀𝐴𝐸 ↓ .0591 .0410 .0359 .0339 .0290 .0259 .0298 .0285 .0295 .0245 .0283 .0277 .0325 .0296 .0295 .0240

N
JU

D

𝐹𝛽 ↑ .8526 .8741 .7661 .8883 .8982 .9000 .8888 .8733 .9042 .9068 .8927 .9034 .9121 .8996 .8886 .9215

𝑆𝛼 ↑ .8588 .8785 .7984 .8804 .8992 .9002 .8943 .8704 .9022 .9089 .8971 .9051 .9119 .9002 .8902 .9188

𝑀𝐴𝐸 ↓ .0789 .0605 .0794 .0521 .0467 .0422 .0532 .0510 .0413 .0422 .0463 .0432 .0399 .0465 .0472 .0354

D
U
T

𝐹𝛽 ↑ .7671 .7903 .7180 .8975 .9263 .9242 .8997 .8923 .8612 .9171 .8954 .9090 .8156 .7855 .8245 .9372

𝑆𝛼 ↑ .7913 .8083 .7490 .8879 .9159 .9157 .9031 .8864 .8758 .9136 .8894 .9070 .8368 .8152 .8396 .9274

𝑀𝐴𝐸 ↓ .1126 .0926 .0955 .0477 .0362 .0340 .0440 .0426 .0556 .0372 .0465 .0405 .0745 .0848 .0724 .0302

S
T
E
R
E
O 𝐹𝛽 ↑ .8425 .8705 .8601 .8861 .8987 .8903 .8158 .8864 .8740 .9008 .8199 .8971 .8844 .8495 .8800 .9033

𝑆𝛼 ↑ .8559 .8775 .8714 .8858 .9004 .8920 .8424 .8868 .8855 .9054 .8410 .8999 .8882 .8687 .8820 .9055

𝑀𝐴𝐸 ↓ .0796 .0591 .0537 .0474 .0428 .0449 .0746 .0431 .0509 .0422 .0712 .0429 .0497 .0578 .0485 .0410

L
F
S
D

𝐹𝛽 ↑ - - .8214 .8523 .8555 .8626 .8310 .8280 .8217 .8390 .8417 .8623 .7287 .8062 .8602 .8746

𝑆𝛼 ↑ - - .8199 .8393 .8498 .8495 .8292 .8258 .8171 .8444 .8375 .8491 .7422 .8167 .8520 .8703

𝑀𝐴𝐸 ↓ - - .0953 .0830 .0809 .0751 .1018 .0839 .1031 .0818 .1031 .0792 .1340 .1023 .0809 .0631

4.3 Comparisons with SOTA Methods

We compare our CDINet with 15 state-of-the-art CNN-based RGB-D

SODmethods, includingMMCI [3], TAN [2], CPFP [44], DMRA [32],

FRDT [41], SSF [40], S2MA [28], A2dele [33], JL-DCF [18], DANet [45],

PGAR [4], cmMS [26], BiANet [43], D3Net [15], and ASIFNet [25].

For fair comparisons, we test these methods with the released codes

under the default settings to obtain the saliency maps. As for the

models without released codes, we directly use the saliency maps

provided by the authors for comparison.

Quantitative evaluation. Table 1 objectively indicates the quan-

titative comparison results in terms of three evaluation metrics

on five datasets. It can be seen that our network outperforms all

compared methods on these five datasets, except for the S-measure

on the NLPR dataset. For example, compared with the second best

method on the DUT dataset, the minimum percentage gain reaches

1.2% for max F-measure, 1.3% for S-measure, and 11.2% for MAE

score. On the NJUD dataset, compared with the BiANet [43] (the

second best method), our proposed CDINet has a 1.0% improvement

for max F-measure, 0.8% improvement for S-measure, and 11.3%
improvement for MAE score. On the LFSD dataset, compared with

the second best method, the S-measure is improved from 0.8520 to

0.8703, with the percentage gain of 2.1%. Limited by the page space,

the P-R curves of different methods on five datasets are shown in

the supplementary materials.

Qualitative comparison. In order tomore intuitively demonstrate

the excellent performance of the proposedmethod, we provide some

qualitative comparison results in Figure 3. As we can see in this

figure, our model achieves better visual effects in many challenging

scenarios, such as small objects (i.e., the first image), multiple ob-

jects (i.e., the second image), and disturbing backgrounds (i.e., the

fifth image). Meanwhile, our method not only accurately detects

salient objects, but also obtains better internal consistency. For

example, in the second image, although other methods can detect

multiple windows, they cannot guarantee good structural integrity

and internal consistency of salient objects, while our CDINet does

it, benefiting from the proposed DSE module. In addition, the dense

decoding reconstruction structure also makes the decoding process

more refined, and the object boundary is sharper (e.g., the last im-

age). For the confusing depth map (e.g., the fourth image), most

methods result in redundant areas or vague predictions, yet our

method can effectively suppress these ambiguous regions.

Table 2: Ablation analyses of different components on the

NLPR and DUT datasets.

models
NLPR DUT

𝐹𝛽 ↑ 𝑆𝛼 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝛼 ↑ 𝑀𝐴𝐸 ↓

CDINet .9162 .9273 .0240 .9372 .9274 .0302

w/o RDE .9153 .9261 .0251 .9327 .9226 .0338

w/o DSE .9062 .9219 .0253 .9222 .9184 .0369

w/o DDR .9154 .9258 .0248 .9296 .9238 .0334
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4.4 Ablation Studies

We conduct thorough ablation studies to analyze the effects of indi-

vidual components in our CDINet on the NLPR and DUT datasets.

The quantitative results are reported in Table 2, in which the first

line (i.e., CDINet) shows the performance of our full model. More-

over, we also explore the role of different interaction modes in

Table 3.

Effectiveness of RDEmodule. First, we remove the RDE mod-

ule to verify its role, denoted as ’w/o RDE’, which means two modal-

ity information that does not interact in the first two layers. Com-

pared with the full model listed in Table 2, the performance is

moderately enhanced after adding the RDE module, which achieves

the percentage gain of 4.4% and 10.7% in terms of MAE score on

the NLPR dataset and DUT dataset, respectively. This experiment

shows the effectiveness of the RGB modality to guide the depth

modality through the RDE module.

Effectiveness of DSE module.We also directly delete the DSE

module in the 3𝑟𝑑 , 4𝑡ℎ and 5𝑡ℎ encoders of two-stream backbone

network, and then add the RGB features and depth features of

the top layer for decoding. The results in the third row (i.e., ’w/o

DSE’) of Table 2 demonstrate the positive effect of the DSE module.

On the NLPR dataset and DUT dataset, without the DSE module,

the max F-measure is decreased by 1.1% and 1.6%, respectively. In
addition, we show the visualization of the RGB features before and

after DSE (i.e., 𝑓 5𝑟 and 𝑓 5𝑜𝑢𝑡 ) in Figure 4. With the introduction of

depth guidance through the DSE module, the internal response

of objects in the RGB features is obviously improved, while the

abnormal noise in the background area is effectively suppressed.We

attribute the performance improvement to the attention-level and

feature-level interactive patterns, which assists the RGB modality

in capturing clearer and fine-grained semantic attributes.

RGB Depth GT 5
rf

5
outf

Figure 4: Feature visualization of the DSEmodule in the last

layer of backbone.

Effectiveness of DDR structure. We replace the proposed

dense decoding reconstruction structure by using a corresponding

layer skip connection similar to U-net [34], and the result is shown

in the last line (i.e., w/o DDR) of Table 2. By comparing with the full

network, it can be seen that our decoding strategy improves three

metrics on two testing datasets, especially achieves the percentage

gain of 0.8% for max F-measure and 9.6% for MAE score on the

DUT dataset.

Effectiveness of Discrepant Interaction. In this work, we

propose a novel interaction architecture, here, we conduct a couple

Table 3: The effectiveness analyses of discrepant interaction

structure on the NLPR and DUT datasets.

Number
NLPR DUT

𝐹𝛽 ↑ 𝑆𝛼 ↑ 𝑀𝐴𝐸 ↓ 𝐹𝛽 ↑ 𝑆𝛼 ↑ 𝑀𝐴𝐸 ↓

No.1 .9162 .9273 .0240 .9372 .9274 .0302

No.2 .9153 .9261 .0251 .9295 .9217 .0345

No.3 .9160 .9298 .0242 .9328 .9246 .0327

of experiments to analyze the variants of interaction mode. First, we

reset the guidance direction of the RSE module to the depth branch

pointing to the RGB branch in the first two layers, forming the

unidirectional interaction mode shown in Figure 1(a). As reported

in the second line (denoted as ’No.2’) of Table 3, compared with

the full model (denoted as ’No.1’), the performance is obviously

dropped on the DUT dataset. Furthermore, we also verify the bidi-

rectional interaction mode shown in Figure 1(b) by symmetrically

inserting the RSE module and the DSE module into two branches.

The results (denoted as ’No.3’) show that almost all indicators of

CDINet (i.e., No.1) are optimal, except for the S-measure on the DUT

dataset. However, this performance improvement of the bidirec-

tional interaction mode comes at the cost of increased computation

and the number of parameters, compared with the final model, the

parameter amount is increased by 10M and inference time changes

from 42FPS to 32FPS. In general, our model achieves better results

on the basis of considering both performance and computation cost.

5 CONCLUSION

In this paper, we explore a novel cross-modality interaction mode

and propose a cross-modality discrepant interaction network, which

explicitly models the dependence of two modalities in different con-

volutional layers. To this end, two components (i.e., RDEmodule and

DSE module) are designed to achieve differentiated cross-modality

guidance. Furthermore, we also put forward a DDR structure, which

generates a semantic block by leveraging multiple high-level fea-

tures to upgrade the skip connection. The comprehensive experi-

ments demonstrate that our network achieves competitive perfor-

mance against state-of-the-art methods on five benchmark datasets,

and our inference speed reaches the real-time level (i.e., 42 FPS).
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