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ABSTRACT
Composed image retrieval aims at performing image retrieval task
by giving a reference image and a complementary text piece. Since
composing both image and text information can accurately model
the users’ search intent, composed image retrieval can perform
target-specific image retrieval task and be potentially applied to
many scenarios such as interactive product search. However, two
key challenging issues must be addressed in composed image re-
trieval occasion. One of them is how to fuse heterogeneous image
and text piece in the query into a complementary feature space. The
other is how to bridge the heterogeneous gap between text pieces
in the query and images in the database. To address the issues, we
propose an end-to-end framework for composed image retrieval,
which consists of three key components including Multi-modal
Complementary Fusion (MCF), Cross-modal Guided Pooling (CGP),
and Relative Caption-aware Consistency (RCC). By incorporating
MCF and CGP modules, we can fully integrate the complementary
information of image and text piece in the query through multiple
deep interactions and aggregate obtained local features into an
embedding vector. To bridge the heterogeneous gap, we introduce
the RCC constraint to align text pieces in the query and images
in the database. Extensive experiments on four public benchmark
datasets show that the proposed composed image retrieval frame-
work achieves outstanding performance against the state-of-the-art
methods.
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1 INTRODUCTION
Defined as a fundamental visual task, image retrieval has witnessed
the tremendous advancement from SIFT to CNN, which also boosts
many related areas, such as face recognition [39, 45, 47], person
re-identification [11, 30, 54], and fashion retrieval [31]. However, it
is still far from satisfactory for image retrieval, since users’ query
intent cannot be accurately modeled for single-modal query such
as text query and image query. To overcome the limitation of this
single-modal search, Vo et al. [50] firstly proposed the so-called
composed image retrieval, which composed a reference image and
a modification text describing desired modifications to certain parts
of the reference image as a query to retrieve the target image.
It is very useful for composed image retrieval to support many
commercial applications such as product search. In this scenario,
users’ query intent cannot be met, since it is hard for users to
provide an accurate query product image to the search engine. By
combining a reference image and natural language text, it is possible
to obtain complementary semantics from two modalities and to
make the query intent more complete and accurate.

However, we have to take up two hard challenges before per-
forming composed image retrieval: (1) Feature integration of two
heterogeneous modalities in the query. For the composed image
retrieval, the query consists of a reference image and a text piece,
which cooperate to convey the complete users’ query intent. Since
image and text are totally different modalities, how to integrate the
complementary information of image and text piece in the query
and aggregate heterogeneous features into an embedding vector is
a key issue. (2) Cross-modal alignment. In essence, composed image
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retrieval performs a matching process between query (text+image)
and target (image). Since the matching process crosses two different
modalities, how to bridge the heterogeneous gap between image
modality and text modality is a key issue. Existing composed im-
age retrieval methods mainly focus on addressing the first issue.
For example, TIRG [50] attempted to address the feature integra-
tion problem by “modifying” the query image feature. Specifically
speaking, it firstly utilized the text feature to modify the image
feature in its original feature space and then matched the modified
query image feature with the image features in the database. Based
on TIRG [50], VAL [6] attempted to change the image feature in
different feature maps inside the CNN by using the text feature, and
after that measured the similarity at the multi-level with the pure
target image features. The process is named "Hierarchical Match-
ing". Locally Bounded method [21] employed a specific cross-modal
attention module to fuse words and image regions followed by a
feature pooling operation, and then grasped the similarity with
the ground truth target image in the original image feature space.
However, since cross-modal alignment is not taken into account,
it is less possible for these methods to find a metric space for ac-
curately matching queries and targets. To attempt to align two
modalities, Eric et al. [9] introduced a weight-sharing self-attention
module into composed image retrieval, which not only fused mod-
ification words and reference image regions but also embedded
both query and target features into a sharing space. In this way,
two heterogeneous feature spaces are aligned. However, due to the
asymmetry of the query (text+image) and the target (only image), it
is not enough to only take a weight-sharing self-attention module
for addressing both feature integration and cross-modal alignment.
Therefore, it is necessary to find a more effective method to handle
the above-mentioned issues.

Towards this end, we propose an end-to-end composed image
retrieval framework, which involves three key components for
addressing feature integration and cross-modal alignment prob-
lems, i.e., Multi-modal Complementary Fusion (MCF), Cross-modal
Guided Pooling (CGP), and Relative Caption-aware Consistency
(RCC). Firstly, MCF excavates the complementary relationship be-
tween the reference image and text piece in the query through
multiple deep interactions and then fuses the message from one
modality to another. Secondly, CGP obtains two summary embed-
dings for both image and text by taking the intra-relation of local
features (or word vectors) and inter-relation of local features and
word vectors as cues followed by a linear addition. MCF and CGP
work together to address the feature integration problem. Finally,
RCC utilizes a relative caption network to generate a semantic-
consistency text by jointly using both query image and target image.
By minimizing the generating loss between the generated text piece
and the text piece in the query, we can guide the aligning process
of heterogeneous modalities. In brief, the main contributions can
be summarized as follows:

• We propose an effective framework for composed image
retrieval, which can simultaneously address heterogeneous
feature integration and cross-modal alignment problems by
using the proposed MCF, CGP, and RCC components. Exten-
sive experiments have proved the outstanding performance
of the proposed framework.

• A novel heterogeneous feature integration method, i.e., MCF
and CGP, is proposed to address the heterogeneous feature
integration problem. Different from previous methods, MCF
and CGP take advantage of deep interactions to fully inte-
grate complementary information between image and text
piece in the query.

• A cross-modal alignment method is proposed by using the
Relative Caption-aware Consistency (RCC). By enforcing
query and target to embed into a common shared space in
a symmetrical manner, we can construct a reliable metric
space for matching query and target.

2 RELATEDWORK
2.1 Image Retrieval and Product Search
With the development of deep learning, image retrieval as a basic
visual task has achieved tremendous advancement. Recently many
methods based on deep learning [14, 41] have been proposed to
solve the problem in this domain. At the same time, as an important
branch, cross-modal image retrieval which makes the retrieval task
no longer fix on the form of content-based image retrieval (CBIR)
where the query is a single image can flexibly choose other modality
forms as input such as a natural sentence [51] or a sketch pictured
by the user [42, 57, 58]. Following [50], we investigate the task
of composed image retrieval taking a reference image together
with a text piece as input. This type of image retrieval usually
appears in product search [31]. Obviously, to return a product
image that satisfies the user, incorporating user feedback as the
auxiliary information into the search query can better understand
the true intention of the user and greatly improve the accuracy
of the search. Such user feedback may take many forms. These
forms include relevance [43], attribute [1, 16, 46], sketch [42, 57, 58],
spatial layout [34, 35], and modification text or text piece [6, 21, 50],
of which text, as a tool of communication frequently used by people
in daily life, is more expressive and more in line with user’s habits.
So, in this paper, we discuss how to better utilize a modification
text or a text piece, this form of user feedback, for image retrieval.

2.2 Multi-modal Learning
Multi-modal learning usually involves two or more modalities (e.g.
image and text). Based on this, some tasks are derived, such as image
captioning [49, 55] which generates a textual description to depict
the content within one or more images [10, 24], visual question
answering [2, 3, 33, 53] which attempts to answer a textual question
based on a given image, Image-Text retrieval [6, 27, 28, 52, 60] which
retrieves an image by a given text or retrieves a text by an image,
referring expression [7, 22, 56] which identifies a particular object
within a picture according to a natural language description. In
the paper, we study the task of composed image retrieval which
retrieves a target image by combining a text piece and a reference
image, and we consider learning a sharing embedding space where
not only can the different modalities compose with each other, but
also the similarity of the target and the query can be measured.
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2.3 Interactions between Language and Vision
By making the features of language and vision interact with each
other, the semantics from these two different modalities can con-
vert, match and fuse better. There are various types of interactions
being explored in language and vision tasks. [12, 26, 59] utilize the
method of bilinear pooling to interact and fuse the information
of language and vision in visual question answering. Co-attention
mechanism used in [13, 33, 37, 60] is concerned with the context
involved in visual and textual contents to decide how to distribute
different weights for image regions and text words. Gated multi-
modal units [4] adopts in Image-Text retrieval [6, 52] and composed
image retrieval [50] normally controls the fusion degree by a gate
function. Multimodal residual learning [25] utilized in [40] and [52]
elementwisely adds the compositional feature of image and text
with the original feature of image or text to increase the frequency
of interactions. Currently, several methods [8, 29, 32] building on
Transformer [48] architecture can make the features of language
and vision interact by adopting a novel self-attention mechanism
or cross-attention mechanism.

3 METHOD
In this section, wewill present a detailed description of our proposed
method. As explained above, we aim to propose a method that can
embed both the text+image query and target image to a sharing
space where the matched pairs (query and target) are as close as
possible and the mismatch pairs are far away.

3.1 Images and Texts Representation
Image Representation: To fully explore the visual information,
we use ResNet50 pretrained on the ImageNet dataset as the image
feature encoder. For each image, we extract the output feature
maps of the third and fourth blocks. These feature maps are then
projected to the same 512 channels respectively using two learnable
1 × 1 convolution layers with the width and height keeping. After
concatenating the features from two different blocks, the reference
image is encoded as 𝑓𝑖𝑚𝑔 (I𝑟 ) = 𝜙𝑟 ∈ R𝑑×𝑁 , where 𝑓𝑖𝑚𝑔 is the
encoding operation,𝑑 is the feature dimensionwhose size is 512, and
N is the number of grid features and calculated as𝑁 = 7∗7+14∗14 =
245. Similarly, the target image is encoded as 𝑓𝑖𝑚𝑔 (I𝑡 ) = 𝜙𝑡 ∈ R𝑑×𝑁 .
Text Representation: In terms of text piece, We use a single-layer
LSTM to encode it. While the other advanced encoders such as
bi-LSTM and LSTM attention which are more powerful can be
adopted as well, but it is not the point that we focus on in our
paper. Formally, the text is tokenized into a token sequence which
is then encoded by the LSTM to obtain the hidden state output. We
define hidden state output as 𝑓𝑡𝑒𝑥𝑡 (T) = 𝜙𝑚 ∈ R𝑑×𝐿 , where 𝑑 is
the feature dimension whose size is 512, and 𝐿 is the length of the
current text.

3.2 Baseline Model
Our method is based on what is proposed in [9]. Having finished
the feature extracting operation mentioned above, MAAF [9] treats
the 245 image local feature representations 𝜙𝑟 as tokens and con-
catenates them with the text tokens 𝜙𝑚 to obtain a joint token
sequence Φ = [𝜙𝑟 , 𝜙𝑚] ∈ R𝑑×(𝑁+𝐿) . Then the joint token sequence
Φ is fed into two Transformer blocks [48] including self-attention

layers and feed-forward layers. Self-attention layer firstly projects
the joint token sequence into three matrices then uses a specific
self-attention operation to obtain the output:

𝑆𝑒𝑙 𝑓 (Φ) = 𝐴𝑡𝑡𝑛(Φ𝑇𝑊𝑄 ,Φ𝑇𝑊𝐾 ,Φ𝑇𝑊𝑉 ), (1)

where 𝑄 is query matrix, 𝐾 is key matrix, and 𝑉 is value matrix.
Following this, a feed-forward layer is used to project the hidden se-
quence. Consequently, image tokens coming from different blocks
and text tokens are average pooled separately. The final embedding
𝑒𝑞 is obtained by averaging these three vectors. As for the obtain-
ing of the target image, the same weight-sharing image feature
extractor and Transformer blocks are taken to get the final target
embedding 𝑒𝑡 except that the text piece is absent.

Given the mini-batch of query embeddings and their only pair
target embeddings, the training objective is to push the embeddings
of the matching pairs closer, while pulling mismatch images away.
So a batch-based classification loss is used which can be written as:

𝐿𝑏𝑎𝑡 =
1
𝐵

𝐵∑
𝑖=1

−𝑙𝑜𝑔
{

𝑒𝑥𝑝 {𝜅 (𝑒𝑞𝑖 , 𝑒𝑡𝑖 )}∑𝐵
𝑗=1 𝑒𝑥𝑝

{
𝜅
(
𝑒𝑞𝑖 , 𝑒𝑡 𝑗

)} } , (2)

where 𝜅 is a similarity kernel, and 𝐵 is the size of the training
mini-batch which is also the number of pairs (query and their
corresponding target). The whole network is trained with standard
backpropagation.

Our model employs the same architecture including ResNet50 for
image encoder, one layer LSTM for text encoder, and Transformer
block except that we reduce the number of Transformer blocks
from 2 to 1. Also, to facilitate the narrative later, we define the
output of the Transformer block as Ψ = 𝑇𝑟 (Φ) = [𝜓𝑟 ,𝜓𝑚]. where
𝑇𝑟 is the operation of the Transformer block, Ψ is regarded as
the hidden state output of Φ with the identical sequence order
and length. 𝜓𝑟 ∈ R𝑑×𝑁 and 𝜓𝑚 ∈ R𝑑×𝐿 are the image and text
feature outputs respectively. Same for the target image features,
after weight-sharing Transformer block the hidden state output of
𝜙𝑡 can be obtained, which is defined as𝜓𝑡 ∈ R𝑑×𝑁 .

3.3 Proposed Method
The Transformer block allows each token to attend to all tokens
including itself so that the features from image modality would be
modified by the features of text modality or vice versa. Meanwhile,
sharing the same weight can enforce the features from query and
target simultaneously into a common space. However, taking the
discrepancy and asymmetry of query (image features plus text
features) and target (only image feature) into consideration, it is
difficult to solve these two problems by one shot. So to cope with
the issues above, we propose two modules to facilitate the fusion
process between two distinct modalities in query and propose one
effective constraint to prompt both the query and target into a
common space.

Multi-modalComplementary Fusion (MCF): Inspired by [26,
37, 52], we propose MCF module to explore the complementary re-
lationship between text piece and reference image through multiple
feature interactions of these two modalities. With the help of such
a complementary relationship, the complementary information of
one modality can be converted into another modality. Concretely,
for the procedure of converting text piece into reference image, we
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Figure 1: Overviewof the proposedmethod. The proposed framework is composed of a visual encoderV, a language encoder T, a
weight-sharing Transformer module, a relative caption generator R, twoMulti-modal Complementary Fusion (MCF) modules
(Figure 2), and three Cross-modal Guided Pooling (CGP) modules (Figure 3). The loss function includes the similarity loss of
embedding and generator loss of sentence.

compute the interaction map as follows:

𝑀𝑟1 = 𝜓
𝑇
𝑟 𝑉𝑟𝜓𝑚, (3)

𝑀𝑟2 =𝑊𝑟𝑀𝑟1, (4)
where 𝑉𝑟 ∈ R𝑑×𝑑 ,𝑊𝑟 ∈ R𝑁×𝑁 are learned weight matrix, 𝑀𝑟1 ∈
R𝑁×𝐿 is the first interaction map which is also regarded as the inter-
modal correlation matrix in many attention methods but in our
method, the matrix is used to capture the complementary relation-
ship betweenmodalities.𝑀𝑟2 ∈ R𝑁×𝐿 is the second interactionmap
which is computed through the multiplication of learned weight ma-
trix and first interaction map. It is used not only to excavate a more
complex relationship between two modalities but also to increase
the capacity of the model. In addition to that,𝑀𝑟2,𝑖 𝑗 represents the
complementary relationship between 𝑖th image spatial region and
𝑗th text word. Second, with the assistance of an interaction map,
we can naturally project the features of text into image modality as
follows:

𝑀𝑟 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝑟2) , (5)

𝜓𝑇𝑚 = 𝑀𝑟𝜓
𝑇
𝑚, (6)

where 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 is normalization over the image feature dimension,
𝜓𝑚 ∈ R𝑑×𝑁 is the feature matrix projecting from language modal-
ity to visual modality. Having obtained the representation of text
feature in image space, we need to accomplish fusion procedure
with image feature. Here, a modified gate operation is proposed as
follows:

𝑂𝑟 = 𝑅𝑒𝐿𝑈

(
𝑊𝑟1

[
𝜓𝑇𝑟 ,𝜓

𝑇
𝑚

]𝑇
+ 𝑏𝑟1

)
+𝜓𝑚, (7)

𝐺𝑟 = 𝑠𝑖𝑔𝑛𝑚𝑜𝑖𝑑

(
(𝑊𝑟2𝜓𝑟 + 𝑏𝑟2) ⊙

(
𝑊𝑟3𝜓𝑚 + 𝑏𝑟3

))
, (8)

𝜓𝑟 = 𝑂𝑟 ⊙ 𝐺𝑟 +𝜓𝑟 , (9)
where𝑊𝑟1,𝑏𝑟1,𝑊𝑟2,𝑏𝑟2,𝑊𝑟3,𝑏𝑟3 are learnable parameters,𝑂𝑟 ∈ R𝑑×𝑁
is the selected complementary information from textual modality,
𝐺𝑟 ∈ R𝑑×𝑁 makes a gate role using bilinear interaction between

twomodalities to choose which complementary information should
be encouraged and which should be suppressed.𝜓𝑟 ∈ R𝑑×𝑁 is the
output of the fusion operation which elementwisely adds comple-
mentary features to original image features, and ⊙ denotes the
elementwise multiplication.

As for the operation of fusing reference image into text piece, it is
completely symmetric with the text-to-image operation introduced
above, we use the following formula to summarize this process:

𝜓𝑚 = 𝑀𝐶𝐹 (𝜓𝑚,𝜓𝑟 ), (10)

where𝜓𝑚 ∈ R𝑑×𝐿 is the fused text feature.

Figure 2: Multi-modal Complementary Fusion (MCF) mod-
ule.MCFmines complementary information throughmulti-
ple interactions between differentmodalities and then fuses
the complementary features with original features.

Cross-modalGuided Pooling (CGP): Inspired by [60, 61], hav-
ing obtained both the local fused image features and word-level
fused text features, we need to summarize these two stream infor-
mation to get a global embedding for the convenience of similarity
measure with target embedding in embedding space. Note that it is
also important to consider the interaction between these streams
for achieving a more reasonable blending effect. So CGP adopts an
attention pooling strategy not only considering the relation within
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one modality but also exploiting the relevance between the cur-
rent modality and another modality. Specifically, for the pooling
of image features, text features also participate in it. We first com-
pute two interaction maps (one is denoted as the intra-relation and
another is denoted as the inter-relation) as follows:

𝐴𝑟𝑚 = 𝜓𝑇𝑟 𝐾𝑟𝑚𝜓𝑚, (11)

𝐴𝑟 = 𝜓
𝑇
𝑟 𝐾𝑟𝜓𝑟 , (12)

where 𝐾𝑟𝑚, 𝐾𝑟 ∈ R𝑑×𝑑 is learnable parameters, 𝐴𝑟𝑚 ∈ R𝑁×𝐿 is
similar with the first interaction map in MCF module but taking
𝜓𝑟 and 𝜓𝑚 as input, and 𝐴𝑟 ∈ R𝑁×𝑁 interacts each local image
feature with all image features including itself. By establishing the
two relation maps, we attempt to project those features from two
modalities into one sharing space where the importance of different
image features will be explored. The concrete procedure is written
as:

𝑋𝑟 = 𝑡𝑎𝑛ℎ

(
𝑊1 (𝐴𝑟𝑚𝜓𝑇𝑚)𝑇 + 𝑏1

)
⊙ 𝑡𝑎𝑛ℎ

(
𝑊2 (𝐴𝑟𝜓𝑇𝑟 )𝑇 + 𝑏2

)
, (13)

𝑍𝑟 = 𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑊3𝑋𝑟 + 𝑏3) , (14)
where𝑊1,𝑊2 ∈ R𝑑×𝑑 , 𝑏1, 𝑏2,𝑊3 ∈ R𝑑 , 𝑏3 ∈ R are learnable param-
eters, 𝑋𝑟 ∈ R𝑑×𝑁 dynamically captures the salient information in
the sharing space by comprehensively summarizing two sources
(One is reflecting the intra-relation within local image features and
another is considering inter-relation between local image features
and word features). The interaction method between them also
adopts the bilinear pooling. Finally, an weight distribution over the
whole image features 𝑍𝑟 ∈ R𝑁 can be the output.

Given the formulae about how to obtain pooling weights of
image features, it is relatively easy to deduce the pooling method
of text features which uses a completely symmetrical way to obtain
the weights of text features. Here shows the summary formulae:

𝑍𝑚 = 𝐶𝐺𝑃 (𝜓𝑚,𝜓𝑟 ), (15)

where 𝑍𝑚 ∈ R𝑁 gives each word the weight.
Finally, we obtain the global embedding vector by linearly com-

bining image embedding and text embedding which already have
been solved above as follows:

𝑒𝑞 = 𝛾𝑟𝜓𝑟𝑍𝑟 + 𝛾𝑚𝜓𝑚𝑍𝑚, (16)

where 𝛾𝑟 , 𝛾𝑚 ∈ R are learnable parameters to balance these two
embeddings. 𝑒𝑞 is the query embedding which will be multiplied
by a learned scale parameter as mentioned in MAAF [9] to get the
final query embedding.

For the obtaining of target embedding, the MCF module is un-
necessary obviously and the CGP module can be slightly modified
to adapt to handling the pooling operation for the target image. we
only consider the intra-relation within target image features, and
the solution of target embedding 𝑒𝑡 is listed as follows:

𝐴𝑡 = 𝜓
𝑇
𝑡 𝐾𝑡𝜓𝑡 , (17)

𝑋𝑡 = 𝑡𝑎𝑛ℎ

(
𝑊4 (𝐴𝑡𝜓𝑇𝑡 )𝑇 + 𝑏4

)
, (18)

𝑍𝑡 = 𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑊5𝑋𝑡 + 𝑏5) , (19)
𝑒𝑡 = 𝜓𝑡𝑍𝑡 , (20)

where𝐾𝑡 ,𝑊4,𝑊5 ∈ R𝑑×𝑑 ,𝑏4 ∈ R𝑑 ,𝑏5 ∈ R are learnable parameters.
Same as the query embedding 𝑒𝑞, 𝑒𝑡 will multiply the same learned
scale parameter mentioned above to get the final target embedding.

Figure 3: Cross-modal Guided Pooling (CGP) module. CGP
comprehensively considers the relation between modalities
and the relation within a modality, and then dynamically
weights different local features of one modality based on
this.

Relative Caption-aware Consistency (RCC): The module
MCF and CGP mentioned above are used to resolve the issue of
heterogeneous feature integration between the reference image
and text piece. However, in this image retrieval task, it is quite
important to align the cross-modal semantics in the final embed-
ding space. The previous methods usually utilize extra information
such as image labels to constrain the model to learn a high-level
semantic space where the same semantics of different modalities
will be aligned, but it needs the cost of manual annotations. Based
on our composed image retrieval tasks, we propose a relative image
caption strategy to capture such high-level semantic information
without any extra manual labeling. Relative image caption gener-
ator in [10, 15, 24] is used for generating a description reflecting
the difference between two image, but in our method it is used for
aligning the semantics of different modalities.

After passing the weight-sharing Transformer block, both target
image features and query "blended" features transform to hidden
state output, and after this process, all these features are inserted
into a sharing space. The space can becomemore perfect (the match-
ing pairs become closer) as the training loss gets smaller. In order
to make the features in the space possess higher-level semantic so
that different modality features can fuse better and matching pairs
can become more similar, we take the hidden state output of target
image features 𝜓𝑡 and the hidden state output of only reference
image features without text piece features ( the output named𝜓∗

𝑟 )
as input, and then feed them into a modified LSTM structure by
which we attempt to generate the text piece 𝑇 word by word. The
𝑇 can be encoded as a sequence of one hot vector as follows:

𝑇 = {𝑤1, ...,𝑤𝐿} ,𝑤 ∈ R𝐾 , (21)

where 𝐾 is the size of the vocabulary constructed from words of
all the text pieces and 𝐿 is the length of the current text piece. And
the LSTM structure exhibits as follows:

(𝑖𝑠 𝑓𝑠 𝑜𝑠 𝑔𝑠 )𝑇

= (𝜎 𝜎 𝜎 𝑡𝑎𝑛ℎ)𝑇 𝐴𝑑+𝑑+2∗𝑑,𝑑
(
𝐸𝑤𝑠−1 ℎ𝑠−1

[
𝑧𝑡,𝑠 , 𝑧𝑟,𝑠

] )𝑇
,

(22)

𝑐𝑠 = 𝑓𝑠 ⊙ 𝑐𝑠−1 + 𝑖𝑡 ⊙ 𝑔𝑠 , (23)

ℎ𝑠 = 𝑜𝑠 ⊙ 𝑡𝑎𝑛ℎ (𝑐𝑠 ) , (24)
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where 𝑖, 𝑓 , 𝑐, 𝑜, ℎ ∈ R𝑑 are the input, forget, memory, output and
hidden state of the LSTM, 𝑠 and 𝑠 − 1 mean current step and last
step of the inference procedure. 𝑐0, ℎ0 are initialized randomly.
𝐴𝑎,𝑏 : R𝑎 → R𝑏 is an affine transformation with learnable param-
eters. 𝐸 ∈ R𝑑×𝐾 is a completely new embedding matrix which is
different from the one used for encoding text, 𝜎 is the logistic sig-
moid activation. 𝑧𝑡,𝑠 , 𝑧𝑟,𝑠 are context vectors dynamically capturing
the visual information within different regions of target image and
reference image which are obtained by the same attention operation
used in [55] briefly written as:

𝑧𝑡,𝑠 = 𝑓𝑎𝑡𝑡,𝑡 (𝜓𝑡 , ℎ𝑠−1) , (25)

𝑧𝑟,𝑠 = 𝑓𝑎𝑡𝑡,𝑟
(
𝜓∗
𝑟 , ℎ𝑠−1

)
, (26)

where 𝑧𝑡,𝑠 , 𝑧𝑡,𝑠 ∈ R𝑑 . Similar to [55] we compute the output word
probability by using the LSTM hidden state, the previous word, the
context vector from the reference image, and the context vector
from the reference image as follows:

𝑝
(
𝑤𝑠 |𝜓𝑡 ,𝜓∗

𝑟 ,𝑤𝑠−1
)

∝ 𝑒𝑥𝑝
(
𝑊𝑜

(
𝐸𝑤𝑠−1 +𝑊ℎℎ𝑠 +𝑊𝑧

[
𝑧𝑡,𝑠 , 𝑧𝑟,𝑠

] ) )
,

(27)

where𝑊𝑜 ∈ R𝐾×𝑑 ,𝑊ℎ ∈ R𝑑×𝑑 ,𝑊𝑧 ∈ R𝑑×2𝑑 . Given the text piece,
the objective of relative image captioning is to make the following
cross entropy loss as small as possible:

𝐿𝑟𝑒𝑙 =
1
𝐿

𝐿∑
𝑠=1

−𝑙𝑜𝑔 (𝑝 (𝑤𝑠 |𝑤1, ...,𝑤𝑠−1)) . (28)

3.4 Loss Function
The whole network contains two components including the embed-
ding network for embedding both the query (reference image plus
text piece) and the target (target image) and the text generator for
predicting the text piece from the reference image and target image.
We jointly train these two components including the loss relative
image captioning mentioned in Sec. 3.2 and original batch-based
classification loss mentioned in Sec. 3.3, the final loss function is
composed of two parts as follows:

𝐿𝑓 𝑖𝑛 = 𝛼𝐿𝑏𝑎𝑡 + 𝛽𝐿𝑟𝑒𝑙 , (29)

where 𝛼, 𝛽 are hyperparameters to balance the weights of these
two losses.

4 EXPERIMENT
4.1 Datasets and Evaluation Metric
There are four benchmark datasets used in our experiments: Fash-
ion200K, FashionIQ, Shoes, MIT-States.

(1) Fashion200K dataset [16] has ∼ 200k images attached with
attribute-like product descriptions (such as black pilot jacket) of
fashion products, in which the reference image and target image
having one-word difference in their descriptions become a pair and
the text piece is constructed based on this difference.

(2) FashionIQ dataset [15] has ∼ 60k real product images from
amazon.com. The text piece just like the real-world user feedback
is used to retrieval what the user wants based on a reference prod-
uct image. The dataset has three categories of product: Dresses,
Tops/Tees, and Shirts, and the distributions of them are even. Finally,
the dataset is divided into ∼ 18k queries for training, ∼ 6K queries

for validation, and ∼ 6K queries for test following the splitting
method used in [9].

(3) Shoes dataset [5] is crawled from like.com. Its text piece is
natural language, which is similar to FashionIQ from this point, but
the difference is that the dataset only has 10K images for training
and 4658 images for test. The splitting method is following [6].

(4) MIT-States dataset [23] has ∼ 60K images, in which each
image is tagged with an adjective or state label and a noun or object
label (such as "dry bathroom" or "cooked beef"). There are 115
adjectives and 245 nouns. Following the setting of [50], the goal is
to retrieve the target image which has the same object as the query
image with different adjective or state label. To inspect the ability
of dealing with unseen objects of the model, 49 nouns are used for
the test and the rest is for training.

Evaluation Metric: we adopt the same evaluation metrics Re-
call at K (R@K) in all datasets as [9] to compare our proposed
method with other methods. Recall at K (R@K) computes the per-
centage of test queries whose labeled target image appears in the
top K retrieved images.

4.2 Implementation Details
We use PyTorch in our experiments. We use Resnet-50 [17, 18]
pretrained on ImageNet as our backbone for image encoder (output
feature size = 512) and the LSTM [20] of random initial weights
as our text encoder (hidden size is 512). By default, The model is
trained by SGD optimizer at an initial learning rate of 0.01 which
is decreased by a factor of 10 every 25k iterations and training is
stopped at 75k iterations. We use a batch size of 32 for all experi-
ments. The hyperparameter 𝛼 and 𝛽 of the final loss function are
set as 0.7 and 0.3 by default. Each experiment is repeated 4 times to
obtain a stable retrieval performance, and both mean and standard
deviation are reported.

4.3 Quantitative Results
We compare our proposed method with the baseline model and
published state-of-the-art models in the four benchmark datasets.
We take the best-reported results from corresponding papers when
they are available. The method with an asterisk is our reproduction
of the original method.

Quantitative Results on FashionIQ: We test our complete
model (including module MCF, module CGP, and Constraint RCC)
on FashionIQ, a medium-sized dataset. Table 2 shows the compari-
son to other methods, and the experiment results of them all come
from [9]. Based on the baseline model, MAAF [9], which is also
the SOTA method, our method has a performance improvement of
2.1%.

Quantitative Results on Fashion200K: We test our complete
model on Fashion200K. Because of the relatively large scale of
Fashion200K, specifically, we set the learning rate of training is
decreased by a factor of 10 every 50k iterations and the training
process is stopped at 150k iterations. We set an initial learning
rate of 0.002 for the image model parameters to prevent overfitting.
The experiment results of other methods are taken from [21] and
[6], and due to the lack of detailed results of the baseline model,
we reproduce MAAF based on the code provided by the author
following the same parameter set. Table 3 shows the comparison of
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Table 1: Ablation on the FashionIQ validation set.

Method MCF CGP RCC Dresses R10 (R50) Shirts R10 (R50) Tops/Tees R10 (R50) (R@10 + R@50)/2

Baseline - - - 23.8 ± 0.6 (48.6 ± 1.0) 21.3 ± 0.7 (44.2 ± 0.3) 27.9 ± 0.8 (53.6 ± 0.6) 36.6 ± 0.4
Ours - - ✓ 25.1 ± 1.3 (50.1 ± 0.9) 21.8 ± 0.7 (45.5 ± 0.6) 28.5 ± 0.6 (55.7 ± 0.7) 37.8 ± 0.4
Ours - ✓ - 26.1 ± 0.3 (50.4 ± 0.4) 21.5 ± 0.6 (44.8 ± 0.5) 29.4 ± 0.8 (55.1 ± 0.9) 37.8 ± 0.4
Ours - ✓ ✓ 26.7 ± 0.4 (50.3 ± 0.7) 22.2 ± 0.2 (45.6 ± 0.8) 29.3 ± 0.6 (56.2 ± 0.3) 38.4 ± 0.3
Ours ✓ - - 25.6 ± 0.4 (50.7 ± 0.3) 21.0 ± 0.8 (44.8 ± 0.6) 28.5 ± 0.2 (54.6 ± 0.2) 37.5 ± 0.2
Ours ✓ - ✓ 26.4 ± 0.5 (51.6 ± 0.8) 21.2 ± 0.5 (44.8 ± 0.4) 29.0 ± 1.2 (55.8 ± 0.5) 38.2 ± 0.2
Ours ✓ ✓ - 26.7 ± 0.9 (51.2 ± 0.5) 21.4 ± 0.5 (45.1 ± 0.5) 28.9 ± 0.3 (55.3 ± 0.4) 38.1 ± 0.2
Ours ✓ ✓ ✓ 26.2 ± 0.3 (51.2 ± 0.6) 22.4 ± 0.3 (46.0 ± 0.5) 29.7 ± 0.5 (56.4 ± 0.4) 38.7 ± 0.2

Table 2: Results on the FashionIQ validation set.

Method (R@10 + R@50)/2

TIRG[50] 31.20
VAL[6] 35.4
MAAF[9] 36.6 ± 0.4
Ours 38.7 ± 0.2

our model and other methods. Compared with the baseline method,
our method also has certain boosts in performance. At R@10 and
R@50, The improvements are 1.89%, and 1.46% respectively. VAL[6]
uses a hierarchical matchingmethod to comprehensively match low,
medium, and high-level features, so better results can be obtained,
but it also triples the computational complexity in the inference
process.

Quantitative Results on Shoes: We test our complete model
on Shoes. Due to the relatively small scale of Shoes, we set that
the learning rate of training is decreased by a factor of 10 every
15k iterations, and the training process is stopped at 45k iterations.
Meanwhile, we adjust the hyperparameter 𝛼 and 𝛽 to 0.8 and 0.2.
The experiment results of other methods come from [6]. We repro-
duce the baseline results by only keeping one Transformer block.
The parameter set is the same as the set of our model. Table 4 shows
the comparison of our method and other methods. Our method
surpasses the baseline model with margins of 1.40%, 1.00%, and
0.88% at R@1, R@5, and R@10.

Quantitative Results onMIT-States: Note that the text pieces
in MIT-States are some label words describing the target image as
has introduced in Sec. 4.1. In the experiment, We find that the use
of batch-based classification loss can cause bad performance, so we
replace it with its variation (soft triplet based loss used in [19, 36])
and set that the learning rate is decreased by a factor of 10 every
50k iterations and training process is stopped at 150k iterations.
Meanwhile, we adjust the hyperparameter 𝛼 and 𝛽 to 1 and 0.01.
We reproduce the MAAF with only one Transformer block and
find that the Transformer can’t do very well in handling word-
liked text piece. Actually, we test our model without a Transformer
block on the MIT-States dataset. Results of other methods are from
Locally Bounded [21]. As shown in Table 5, our model still has good
performance when the Transformer block is absent.

Table 3: Results on the Fashion200K test set.

Method R@1 R@10 R@50

Han et al.[16] 6.3 19.9 38.3
Show and Tell[49] 12.3 ± 1.1 40.2 ± 1.7 61.8 ± 0.9
FiLM[40] 12.9 ± 0.7 39.5 ± 2.1 61.9 ± 1.9
Param hashing[38] 12.2 ±1.1 12.2 ±1.1 12.2 ±1.1
Relationship[44] 13.0 ± 0.6 40.5 ± 0.7 62.4 ± 0.6
TIRG[50] 14.1 ± 0.6 42.5 ± 0.7 63.8 ± 0.8
Locally Bounded[21] 17.8 ± 0.5 48.35 ± 0.6 68.5 ± 0.5
VAL[6] 22.9 50.8 72.7
MAAF *[9] 18.22 ± 0.3 47.52 ± 1.1 67.91 ± 0.5
Ours 18.24 ± 0.5 49.41 ± 0.4 69.37 ± 0.8

Table 4: Results on the Shoes test set.

Method R@1 R@10 R@50

FiLM[40] 10.19 38.89 68.30
MRN[25] 11.74 41.70 67.01
Relationship[44] 12.31 45.10 71.4
TIRG[50] 12.60 45.45 69.39
VAL[6] 17.18 51.52 75.83
MAAF *[9] 16.45 ± 0.2 49.95 ± 0.3 76.36 ± 0.2
Ours 17.85 ± 0.3 50.95 ± 0.7 77.24 ± 0.4

Table 5: Results on the MIT-States test set.

Method R@1 R@5 R@10

Show and Tell[49] 11.9 ± 0.1 31.0 ± 0.5 42.0 ± 0.8
Attribute Op.[36] 8.8 ± 0.1 27.3 ± 0.3 39.1 ± 0.3
Relationship[44] 12.3 ± 0.5 31.9 ± 0.7 42.9 ± 0.9
FiLM[40] 10.1 ± 0.3 27.7 ± 0.7 42.9 ± 0.9
TIRG[50] 12.2 ± 0.4 31.9 ± 0.3 41.3 ± 0.3
Locally Bounded[21] 14.72 ± 0.6 35.30 ± 0.7 46.56 ± 0.5
MAAF *[9] 11.22 ± 0.3 31.20 ± 0.4 42.26 ± 0.5
Ours (w/o Transformer) 14.30 ± 0.3 35.36 ± 0.4 47.12 ± 0.2

4.4 Ablation Studies
In this section, we also display the results of the ablation experiment
on the FashionIQ dataset to study the role of each part (including
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Figure 4: QualitativeResults of FashionIQ. The green and red boxes represent the reference image and target image respectively.
The first row shows the results of our model and the second row shows the results of the baseline model.

Figure 5: Qualitative Results of Shoes. The reference image and target image are marked by green and red boxes respectively.
The two-row exhibits the results of our model (top) and the baseline model (bottom).

module MCF, module CGP, and constraint RCC) plays in perfor-
mance improvement. These results are shown in Table 1. Effect of
Multi-modal Complementary Fusion (MCF): As a supplement
to the original Transformermodule,MCFmakes the fusion ofmodal-
ities more sufficient through multiple interactions. Judging from
the experimental results, a certain improvement can be achieved
on the basis of the Transformer model. Effect of Cross-modal
Guided Pooling (CGP): The function of CGP is to dynamically
assign weights to local features according to the relation within one
modality and the relation between two modalities. Such function is
obviously not available in the Transformer block or MCF module.
From the results of the ablation experiment, CGP is a very useful
module. Even if directly following the Transformer module, it can
achieve considerable results. Effect of Relative Caption-aware
Consistency (RCC): RCC can enforce the output hidden features
to learn a higher-level semantic space. Once the model has learned
the high-level semantics, not only can the semantic gap between
the modalities be eliminated, but the query embeddings and target
embeddings can also be well measured. So whether this constraint
is added to the original Transformer model or our improved model,
a better improvement can be achieved.

4.5 Qualitative Results and Visualizations
Figure 4 and Figure 5 show the qualitative comparisons between
our model and the baseline model, of which the samples of Figure 4
come from the validation set of Fashion IQ and samples of Figure 5
come from the test set of Shoes. Each graph includes a reference

image, a text piece, and the top ten retrieved results corresponding
to two different models. Compared to the baseline model, the im-
proved model can capture some specific words better within the
text piece, such as "sections" and "buckle" in the samples. This also
shows our model’s ability to grasp high-level semantic information.

5 CONCLUSION
In this paper, we propose a useful model including two modules
(MCF and CGP) and a constraint (RCC) to handle the modality
fusion problem and similarity matching problem in the task of com-
posed image retrieval. Specifically, (1) our method uses multiple
interactions between modalities to mine the complementary in-
formation that exists between modalities and fuse features from
reference images and modified texts. Our method can further im-
prove performance based on the original Transformer model. (2)
Our method adopts a relative image caption strategy to bridge the
semantics between visual and textual features and creates a more
ideal common space for fusion operation and measure operation.
We validate our models on four benchmark datasets. The results
of the experiment on these datasets signify that our method can
achieve the state-of-the-art performance.
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