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Global and Local Knowledge-Aware Attention
Network for Action Recognition
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Abstract— Convolutional neural networks (CNNs) have shown
an effective way to learn spatiotemporal representation for
action recognition in videos. However, most traditional action
recognition algorithms do not employ the attention mechanism
to focus on essential parts of video frames that are relevant to
the action. In this article, we propose a novel global and local
knowledge-aware attention network to address this challenge for
action recognition. The proposed network incorporates two types
of attention mechanism called statistic-based attention (SA) and
learning-based attention (LA) to attach higher importance to the
crucial elements in each video frame. As global pooling (GP)
models capture global information, while attention models focus
on the significant details to make full use of their implicit
complementary advantages, our network adopts a three-stream
architecture, including two attention streams and a GP stream.
Each attention stream employs a fusion layer to combine
global and local information and produces composite features.
Furthermore, global-attention (GA) regularization is proposed
to guide two attention streams to better model dynamics of
composite features with the reference to the global information.
Fusion at the softmax layer is adopted to make better use
of the implicit complementary advantages between SA, LA,
and GP streams and get the final comprehensive predictions.
The proposed network is trained in an end-to-end fashion and
learns efficient video-level features both spatially and tempo-
rally. Extensive experiments are conducted on three challenging
benchmarks, Kinetics, HMDB51, and UCF101, and experimental
results demonstrate that the proposed network outperforms most
state-of-the-art methods.

Index Terms— Action recognition, attention mechanism, con-
volutional neural networks-recurrent neural networks (CNNs-
RNNs) framework, spatiotemporal feature.
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I. INTRODUCTION

RECOGNIZING action is one of the most challenging
problems in computer vision due to the complicated

motion dynamics, cluttered background, viewpoint variations,
and high computational complexity. To obtain robust video-
level representation to these issues, previous studies made
extensive explorations in how to fully exploit the spatial and
temporal information to represent an action, such as improved
dense trajectories (IDT) [1], space–time interest point (STIP)
[2], and scale-invariant feature transform (SIFT) [3]. However,
these methods achieved relatively marginal progress.

Recently, convolutional neural networks (CNNs) have
attracted growing attention in computer vision for the superior
properties providing support for the tasks of image classifi-
cation [4], object segmentation [5], and object tracking [6].
Intensive interests applying CNNs to action recognition in
videos have been raised. Previous model [7] used a CNN
to extract the feature of each frame and pooled features of
multiple frames belonging to one video for the video-level pre-
diction, which failed to capture sufficient motion information
for action recognition. The challenge of constructing effective
spatiotemporal representation could be alleviated via fusing
motion and appearance knowledge in the way of two streams.
Although this model [8] achieved desirable results, it lacks the
capacity of capturing long-term temporal dynamics. Recurrent
neural networks (RNNs), especially long short-term memory
(LSTM) [9], achieved impressive results in the sequence tasks
due to the ability of long-term temporal modeling, so an
alternative strategy is to adopt LSTM to model dynamics
of frame-level features. However, most existing LSTM-based
approaches do not make the distinction between various parts
of video frames. In addition to 2-D CNNs used for image
processing, 3-D CNNs [10] were proposed to process videos.
They replaced 3 × 3 convolutional kernels with those of
3 × 3 × 3 to perform 3-D convolutions over stacked frames.
However, these methods usually have abundant parameters and
need to be pretrained on a large-scale video data set, e.g.,
Kinetics [11].

As attention mechanisms can help models locate discrim-
inative regions, it has been deployed in the image cap-
tion, machine translation, and fine-grained image recognition,
achieving promising results. It is recorded in the cognitive
psychology literature [12] that the attention is the cogni-
tive process of selectively concentrating on a discrete aspect
of information. The experimental results [13] showed that
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Fig. 1. Illustration of our SA for action Archery. We extract the features of
video frames from a CNN and use a statistic-based method to map the resulted
3-D activation tensor to the 2-D attention map. Then, bilinear interpolation is
used to up-sample the 2-D attention map to the original input size, referred to
the attention image. Finally, we obtain these synthetic images by fusing raw
video frames and corresponding attention images equally. This figure shows
that most relevant parts for action Archery, such as the elbow, the hand, and
the arrow, are attached with attention, which guides our model to make the
correct prediction.

applying attention mechanisms can bring benefits to many
tasks due to the allocation of limited processing resources
reasonably. As depicted in Fig. 1, when raw video frames are
fed into our attention model, most relevant parts for action
Archery, such as the elbow, the hand, and the arrow, are
attached with attention, which provides significant details for
our model to make the correct classification. Thus, deploying
attention mechanisms in a model properly would contribute to
the task of action recognition.

Motivated by these facts and to tackle the abovemen-
tioned challenges, we propose a novel global and local
knowledge-aware attention network for action recognition,
which can make full use of the implicit complementary
advantages of global and local information. More specifically,
the proposed network consists of three streams: statistic-based
attention (SA) stream, learning-based attention (LA) stream,
and global pooling (GP) stream. The frame-level feature
extracted from the base convolution layers is processed by
three streams simultaneously, and then, each attention stream
uses a fusion layer to aggregate outputs of the GP layer and the
attention module, deriving the composite feature containing
global and detailed local information. In addition, the global-
attention (GA) regularization is proposed to guide two atten-
tion streams to better model dynamics with the reference
to the global information. Finally, SA stream, LA stream,
and GP stream are fused equally in the softmax layer to
make comprehensive predictions. It is worth to note that
three streams share the base convolution layers. The proposed
network embedded with two types of attention can learn
efficient video representation both spatially and temporally.

In summary, the main contributions of this article are
summarized as follows.

1) We propose a novel global and local knowledge-aware
attention network for action recognition. The proposed
model adopts a three-stream architecture, including two
attention streams and a GP stream, to exploit the implicit
complementary advantages of global and local informa-
tion for comprehensive predictions.

2) We propose to use the first attention mechanism named
SA to focus on various parts of video frames. This
attention uses the statistic of activation tensors across
the channel dimension to locate the most discriminative
region. It has no parameters and is nearly cost-free.

3) We propose to use the second attention mechanism
named LA to make the distinction between different
parts of each frame. It comprises two stacked fully con-
nected layers and learns to pay attention to the essential
regions precisely. This mechanism can be optimized in
an end-to-end fashion by a standard backpropagation
algorithm.

4) We propose the GA regularization to guide two atten-
tion streams to better model proper dynamics with the
reference to the global information.

II. RELATED WORK

There have been intensive studies on action recognition.
In this section, we review the related works from three
perspectives of CNNs, RNNs, and attention mechanisms.

A. CNNs for Action Recognition

Deep CNNs are witnessed significant advancements in
numerous visual tasks since Krizhevsky et al. [14] pro-
posed AlexNet. Motivated by these, early attempts used
CNNs to learn spatiotemporal representation for action
recognition through temporal information fusion strategies.
Karpathy et al. [7] described several fusion methods and pro-
posed a multiresolution approach such that high layers have
access to the temporal structure across all input frames. To uti-
lize motion information, an alternative way was to combine
optical flow containing short-term motion information [8].
The two-stream network consists of two separate subnetworks,
where one is for raw images and the other is for stacked optical
flow, respectively, and captures spatiotemporal information by
fusing the softmax scores of two streams. Wang et al. [15]
introduced the spatiotemporal compact bilinear operator to
process features at multiple abstraction levels to construct spa-
tiotemporal pyramid representation. Fan et al. [16] proposed a
TVNet to imitate the optimization iterations of TV-L1, which
could be fine-tuned by specific tasks. In addition to RGB and
optical flow information, audio, pose, and trajectory were also
used to provide essential cues for action recognition [17], [18].
Wang et al. [19] concatenated dense trajectory descriptors with
appearance features and achieved competitive performance.
Choutas et al. [20] encoded the movement of human joints,
and the resulted heatmaps were aggregated temporally, obtain-
ing PoTion representation. The 3-D convolutional network [10]
took multiple adjacent frames as inputs and constructed 3-D
convolutional kernels to perform 3-D convolution operation
over the stacked frames. To explore the benefits of deep 3-D
features, Hara et al. [21] transferred 2-D residual connections
to a 3-D structure and proposed a 101-layer residual 3-D CNN.
In addition, by modeling the neural mechanism of the primary
visual cortex and the middle temporal cortex, Liu et al. [22]
proposed a bioinspired model to perform action recognition
based on the spatiotemporal inseparability and center-surround
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suppression of neurons. Wang et al. [23] stacked multiple
SMART building blocks consisted of an appearance branch
and a relation branch to model appearance and relations
simultaneously.

B. RNNs for Action Recognition

Recurrent structures were also resorted to modeling the
temporal dynamics due to the advances in sequence tasks.
Ergen and Kozat [24] introduced a regression structure based
on LSTM for efficient online learning. Donahue et al. [25]
designed a recurrent convolutional architecture, which cas-
caded a CNN with a recurrent model into a unified model.
CNN was used to extract features of each frame, and then,
these features were fed into LSTM step by step for modeling
dynamics of the feature sequence so that it could learn video-
level representation in both spatial and temporal dimensions.
Beyond short snippets, Ng et al. [26] combined the temporal
feature pooling architecture with LSTM to allow the model to
accept arbitrary-length frames. Wang et al. [27] utilized a deep
3-D-CNN to process salient-aware clips and fed the features
extracted from the fully connected layer of a 3-D-CNN into
LSTM for action recognition. According to the spatial–optical
data organization, Yuan et al. [28] synthesized motion tra-
jectories, optical, and video segmentation into spatial–optical
data and used a two-stream 3-D CNN to process synthetic
data and RGB data separately. Then, the resulted spatiotem-
poral features were fed into LSTM to mine their patterns.
Sun et al. [29] proposed Lattice-LSTM to apply local space-
variant superposition operations on the cell memory of LSTM,
which enhanced the ability to capture various motion patterns.

C. Attention Mechanism

Recently, the attention mechanism has been widely used in
machine translation [30] significantly. Xu et al. [31] incor-
porated two variant attention mechanism called soft attention
and hard attention into a caption generation model. Zagoruyko
and Komodakis [32] defined an activation-based attention map
and a gradient-based attention map and transferred attention
maps of a powerful network to a weak CNN to improve the
performance of the latter for image classification. Inspired by
Bahdanau et al. [30], Sharma et al. [33] proposed a recur-
rent network embedded with a soft attention mechanism that
learned to attach higher importance to the elements relevant to
actions. In addition to spatial attention, temporal attention was
also integrated into a unified framework [34], [35] to consider
both spatial and temporal cues. Zhang et al. [36] developed a
variant LSTM incorporating an attention unit to explore the
spatial–temporal relation between different parts. However,
most attention mechanisms embedded in LSTM depend on
inner hidden states of LSTM, which alleviates the speed of
computation greatly. Unlike generating an attention map from
LSTM, Li et al. [37] used a spatial attention neural cell to find
the spatial regions where action appears, and a temporal atten-
tion neural cell to determine temporal segments containing
the action. Long et al. [18] constructed RGB attention cluster,
flow attention cluster, and audio attention cluster to integrate
local features of multiple modalities. To exploit interactions

among local features, Du et al. [38] proposed an interaction-
aware attention network to extract features of different layers
and used principal component analysis (PCA) to obtain the
interaction information among these features.

Different from previous works, our goal is to make full
use of both significant local details and global informa-
tion. To address this issue, we propose a global and local
knowledge-aware attention network for action recognition.

III. PROPOSED NETWORK

The pipeline of the proposed network is shown in Fig. 2.
Three streams from the top to the bottom of the network
are named SA stream, GP stream, and LA stream, respec-
tively. More specifically, each stream uses a shared residual
network (ResNet) to extract spatial features. Then, two types
of attention capture different detailed action information, while
the GP stream learns global information from appearance fea-
tures. Next, a fusion layer is designed to aggregate global and
local details into a composite feature. Inspired by the rank loss
between prediction probabilities used in fine-grained image
recognition [13], a GA regularization is proposed to guide
two attention streams to better model dynamics of composite
features with the reference to the global information. Fusion at
the softmax layer is adopted to make the final comprehensive
predictions. Our network explores the implicit complementary
advantages between global and local information at the feature
level and the score level. Sections III-A–III-F will describe
these parts in detail.

A. Feature Extraction

Recently, CNNs have shown an effective way to learn high-
level semantic features. ResNet was initially introduced by
He et al. [39]. It constructs the identity shortcut connections
between the input and the output of each building block to mit-
igate the problems of vanishing and exploding gradient. Thus,
in this article, considering the tradeoff between computation
cost and performance, ResNet with 34 layers (ResNet-34) is
used as the backbone network to extract appearance features
and initialized by the parameters of ResNets-34 pretrained on
ImageNet [40].

ResNet-34 consists of multiple layers, a convolutional layer
(Conv1), four groups of building blocks (Conv2_x , Conv3_x ,
Conv4_x , and Conv5_x), an average pooling layer, and a
classifier layer. Each group of blocks comprises a specific
number of building blocks that perform convolution, batch nor-
malization, and nonlinear activation. All convolutional layers
have 3 ×3 kernels except that the first convolutional layer has
7 × 7 kernels. Raw video frames are fed into ResNet-34, and
the output of Conv5_x is used as an appearance feature, called
the activation tensor, F∗ ∈ RC×H×W , which is represented as

F∗
t = (

f ∗
t,1, f ∗

t,2, . . . , f ∗
t,H×W

)
(1)

where ∗ stands for SA, LA, or GP, respectively. Thus, FSA
t

represents the feature of the t th frame for SA stream, FLA
t is

for LA stream, FGP
t is for GP stream, and C , H , and W are

the number of channels and height and width of the activation
tensor, respectively. Each C-dimensional vector f ∗

t,n ∈ RC
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Fig. 2. Pipeline of the proposed network. Our network adopts a three-stream architecture, including two attention streams and a GP stream. The top is SA
stream, the bottom is LA stream, and the middle is the GP stream. Shared ResNet is used to extract spatial features. Each attention stream employs a fusion
layer to derive the composite features containing global and detailed local information. GA regularization is proposed to enable attention streams to better
model dynamics with the reference to the GP stream. Fusion at the softmax layer is implemented to fully exploit the implicit complementary advantages of
global and local knowledge for comprehensive predictions.

could be considered to correspond to a specified region of
input frames. Consequently, the feature sequence F∗

t could be
used to calculate the importance of input locations and find
the most discriminative region.

B. Attention Mechanism

Most traditional algorithms do not take advantage of the
complementary relation between global and local information
for action recognition. These algorithms use the features from
the fully connected layer to model temporal dynamics, which
discard detailed action information. Some attention models
operate on the features from convolutional layers that lack
global information of action. Due to the impressive results of
attention mechanism on various tasks, especially on natural
language processing, we propose to use two types of attention
to capture different significant detailed action information,
which could be combined with global information to improve
the performance of CNNs for action recognition.

Here, to capture global information being complementary
to the detailed local information, we design the GP stream
employing an average pooling layer to pool the activation ten-
sor into a fixed-length feature vector averagely. The following
formula is used to process activation tensors:

RGP
t = 1

H × W

H×W∑
n=1

f GP
t,n (2)

where f GP
t,n denotes the nth vector of the activation tensor

FGP of the t th frame and RGP
t denotes the frame-level feature

vector of the t th frame. In the following, we discard the
subscript t for brevity. After pooling the feature sequence of

different appearance locations averagely, it can be considered
as the global or general representation of an action. However,
these features may be insufficient to model comprehensive
dynamics of action due to the lack of details. Hence, two
types of attention mechanisms are proposed to capture detailed
information of actions, which is complementary to global
representation.

1) Statistic-Based Attention: In this section, we introduce
the first attention mechanism that focuses on the most discrim-
inative parts of each frame and maps convolutional features to
a fix-length vector. SA is parameter-free, which means that it
needs no extra training data to train this attention specially.
In this attention, we follow the assumption that the absolute
value of each neuron in activation tensors could be used as
an indicator of how important the corresponding image region
is. Let us reconsider the activation tensor FSA ∈ RC×H×W ,
and SA processes it according to three steps. First, a mapping
function �(·) is constructed to map activation tensors FSA ∈
RC×H×W to MSA ∈ RH×W

MSA
h,w = �(FSA) =

C∑
c=1

∣∣FSA
c,h,w

∣∣2 (3)

where FSA
c,h,w denotes the value at the position (c, h, w) of

FSA and MSA
h,w denotes the value at the position (h, w) of the

2-D output. Then, MSA is normalized by a softmax function
as weights, named the attention map

T SA
h,w = exp

(
MSA

h,w

)
∑H

h=1
∑W
w=1 exp

(
MSA

h,w

) (4)

where the value of the attention map T SA
h,w denotes the spatial

importance of corresponding regions in the case of SA. Finally,
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Fig. 3. Illustration of SA. SA uses an attention mapping function to map a
3-D activation tensor to a 2-D attention map based on the statistic of activation
tensors across the channel dimension.

Fig. 4. Illustration of LA. LA employs two stacked fully connected layers
to learn to focus on the most essential parts. This attention can be trained in
an end-to-end fashion by a standard backpropagation algorithm.

we compute weighted summation between the attention map
T SA and feature sequences FSA

RSA =
H∑

h=1

W∑
w=1

T SA
h,w × FSA

h,w (5)

where RSA is the frame-level feature vector produced by SA.
Fig. 3 illustrates the pipeline of SA. Although this attention
only uses the statistic of an activation tensor across the channel
dimension, the model can focus on the most discriminative
regions. Therefore, SA can capture detailed action information.

2) Learning-Based Attention: To offset the SA depending
on the statistic of activation tensors, we propose to use
the second attention mechanism, named LA, to learn to focus
on the most important parts. Unlike SA that is parameter-free,
LA has two stacked fully connected layers. The pipeline of
LA is illustrated in Fig. 4.

The first fully connected layer has 128 neurons, while
the second layer has one neuron whose output is used as the
importance indicator of each input region. LA also consists
of three steps that resemble the previous one. The first step
of this attention uses two fully connected layers to map
each C-dimensional vector f LA to a scalar indicating the
importance of different input regions, which can be described
in the following formula:

MLA
h,w = �(FLA) = W LA

1 × tanh
(
W LA

0 × f LA
h,w

)
(6)

where W LA
0 ∈ R128×512 is the parameter matrix of the first

layer and W LA
1 ∈ R1×128 is the parameter matrix of the second

layer. The bias term is omitted for simplicity. Similarity, MLA
h,w

is normalized by a softmax function

T LA
h,w = exp

(
MLA

h,w

)
∑H

h=1
∑W
w=1 exp

(
MLA

h,w

) (7)

where T LA
h,w represents the importance of input regions corre-

sponding to the position (h, w) of the activation tensor in the
case of LA. After obtaining the attention map, T LA

h,w is used to
aggregate feature sequence FLA into a fix-length vector

RLA =
H∑

h=1

W∑
w=1

T LA
h,w × FLA

h,w (8)

where RLA denotes the frame-level feature vector produced
by LA. LA compensates SA for the lack of learning ability.

Due to the LA mechanism is embedded in the network,
the parameters (W LA

1 and W LA
0 ) could be learned effectively

by using a backpropagation algorithm in an end-to-end fash-
ion. The main differences between our attention mechanism
and others are twofold. First, two types of attention mecha-
nisms described in this article determine the important parts
without the guidance of the hidden state ht in LSTM. Second,
SA attends the crucial parts through the statistic of activation
tensors directly.

C. Fusion of Global and Local Information

As described in Section III-B, the model with GP treats
various parts of a frame equally, ignoring detailed action
information, while the model with SA or LA focuses on the
most discriminative local details. Thus, it is natural to construct
practical spatiotemporal representation by fusing global and
local information. We introduce the feature fusion layer that
concatenates for GP representation with the statistic-based or
LA representation, respectively, to obtain composite features

RGS = [RGP, RSA] (9)

RGL = [RGP, RLA] (10)

where RGS represents the composite feature of GP and SA
representation, RGL represents the composite feature of GP
and LA representation, and [·] denotes the feature concatena-
tion operation. Then, composite features, RGS and RGL, are
fed into the recurrent model to produce the video-level feature.

D. Efficient Temporal-Relation Modeling

Although LSTM has made significant advances in many
fields as the superiority of modeling dynamics, the update
of gate states in the recursion depends upon previous hidden
states ht−1, which dramatically restricts the speed of compu-
tation. Different from the previous recurrent models, simple
recurrent unit (SRU) proposed by [41] breaks the dependence
by completely dropping ht−1 in the recursion, which simplifies
the state computation and discloses more parallelism while
retaining the strong capability of representation. Thus, SRU is
used to model temporal dynamics through feeding composite
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Fig. 5. Illustration of SRU. ψ represents the operation of 1-input, g is the
hyperbolic tangent function, and σ is the sigmoid function. � and ⊕ are
elementwise multiplication and addition, respectively. We do not show the
bias for simplicity.

features step by step

R̃�t = W �R�t (11)

f �t = σ
(
W �

f R�t + b�f
)

(12)

r�t = σ
(
W �

r R�t + b�r
)

(13)

c�t = f �t � c�t−1 + (
1 − f �t

) � R̃�t (14)

h�t = r�t � g(c�t )+
(
1 − r�t

) � R�t (15)

where � stands for GS, GL, or GP, so RGS
t , RGL

t , and
RGP

t represent two composite features and global features,
respectively, f �t and r�t are sigmoid gates referred to the forget
gate and the reset gate, and g(·) is the hyperbolic tangent
function, as shown in Fig. 5. When an input vector R�t is
fed into this recurrent module, R̃�t , f �t , and r�t at each time
step can be computed simultaneously. Equations (14) and (15)
are elementwise operations. A mean-pooling layer followed
by a softmax layer is employed to compute the probability
distribution on all action categories by the following formula:

P�(y = j) =
exp

(
1
N

∑N
t=1 W �

j t S�t
)

∑K
k=1 exp

(
1
N

∑N
t=1 W �

j t S�t
) (16)

where � has the same meaning as in (11)–(15), W �
j t represents

the weight of the last fully connected layer which maps the
output S�t of the recurrent model at the time step t to action
j , K is the number of neurons in the softmax layer, and N is
the number of time steps.

E. GA Regularization

Inspired by the rank loss used in image recognition [13],
we propose the GA regularization to enable the recurrent
network to model dynamics more reliable based on the global
information. The GA regularization is defined as follows:

LossGA(Att) = max(0, PGP − PAtt + margin) (17)

where PGP is the prediction probability of the GP stream
and PAtt is the prediction probability of the attention stream,
so PSA is for the prediction probability of SA and PLA is
for LA. We empirically set the margin to 0.1. Compared with
the rank loss, the main difference is that GA regularization is

used to optimize the whole model with the reference to GP
representation. The overall loss is shown as follows:

Loss = Loss f (Y, Ỹ )+ LossGA(SA)+ LossGA(LA) (18)

where Y is the predicted class vector, Ỹ is the ground-truth
vector denoted by a one-hot vector, and Loss f (·) is the cross-
entropy loss function. Based on global information, the GA
regularization can guide two attention streams to generate
more confident predictions.

F. Different Fusion Models

Finally, to strengthen the robustness of video-level repre-
sentation, the following formula is used to combine different
representation by averaging their softmax scores equally:

Pearly = a × PGS + b × PGL + c × PGP (19)

where P(·) in the right-hand side the equation refers to the
prediction of features RGS, RGL, or RGP and Pearly is the
final prediction by combining three streams. We assign 1/3 to
coefficients a, b, and c, respectively, in all experiments,
unless stated otherwise. This model is termed the early fusion
model because attention and global features are fused at the
feature level early. With this fusion strategy, three streams
are integrated into a unified network and make comprehensive
predictions.

Instead of combining global information with local informa-
tion at the feature level, we also propose an alternative network
to fuse different types of information at the score level.
As shown in Fig. 6, statistic-based representation, GP rep-
resentation, and learning-based representation are fed into the
recurrent model followed by a time-series pooling layer and
a softmax layer to produce probabilities that are then fused
to make the final classifications. Note that there is no GA
regularization and a fusion layer in this late fusion network

Plate = d × PGP + e × PSA + f × PLA (20)

where P(·) in the right-hand side of this equation is the
prediction of GP representation (PGP), SA representation
(PSA), or LA representation (PLA). Plate is the final prediction
by fusing these three streams at the score level. We also
empirically assign 1/3 to all coefficients d , e, and f .

G. Implementation Details

In this article, the off-the-shelf ResNets-34 pretrained on
ImageNet is used as the appearance feature extractor. Depend-
ing on the sizes of GP features and composite features,
the input sizes of corresponding recurrent models are set to
512 and 1024 neurons, respectively. The number of layers
of recurrent models is kept the same as 3. The hidden units
are set to 1024 in all experiments. In the LA mechanism,
we experimentally find that the setting of 128 neurons for the
first fully connected layer works best.

All videos are split into multiple 30-frame samples with a
stride 15 for expanding the scale of samples. We impose the
restriction on the maximum split number to 20. More specifi-
cally, to extract spatial features by ResNet, we first resize the
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Fig. 6. Illustration of the late fusion network. There is no GA regularization and a fusion layer in it. SA representation, GP representation, and LA
representation produced by well-trained CNNs are fed into the recurrent model followed by a time-series pooling layer and a softmax layer to produce
probabilities that are then fused to make the final classification.

raw frame into 256×256. Second, we crop the rescaled frame
with random size (0.08–1.0) and random aspect ratio (3/4–4/3)
and then resize it to 224×224. Finally, frames are horizontally
flipped with a probability of 0.5 for data augmentation. In addi-
tion, values of each frame in the range [0, 255] are linearly
converted to a tensor in the range [0–1.0] and normalized
with mean (0.485, 0.456, 0.406) and standard deviation (0.229,
0.224, 0.225) for RGB channels to be suitable for processing.
The same preprocessing operation is adopted in training and
testing phrases except for center crop and no flip in testing.

The weights of the recurrent model are initialized randomly,
and all models are trained in an end-to-end fashion. The Adam
optimization algorithm [42] with minibatch size 28 is used to
optimize models. The learning rate starts from 1e-5 for the first
eight epochs and changed to 1e-6 for the rest eight epochs.
The dropout regularization ratio 0.6 is adopted in the linear
transformation of the recurrent model. In testing, predictions
of clips belonged to one video are averaged for the completed
prediction.

Finally, after all hyperparameters are determined, we make
experiments on the large-scale video data set, i.e., Kinet-
ics [11]. Due to that Kinetics has about 500k videos and
each video lasts around 10 s, it is necessary to reduce the
computation burden by sampling. Inspired by the sampling
strategy [43], each video is split into three segments evenly,
and we sample four frames from each segment randomly,
which can maintain vital information at every action intervals.
Thus, with this strategy, videos with different temporal lengths
are aligned and can be represented by 12 frames efficiently.
Therefore, the batch size is changed to 64, the learning rate
is changed to 0.001, and the training stops at 25 epochs. The
rest details are the same as mentioned earlier.

IV. EXPERIMENTAL EVALUATION

In this section, we first perform extensive experiments
on two challenging benchmarks, i.e., HMDB51 [44] and
UCF101 [45], to comprehensively demonstrate the effective-
ness of various components in our network. Then, differ-
ent fusion strategies are investigated to take advantage of

different representations. Next, experiments on Kinetics [11] is
conducted to validate the effectiveness on the large-scale data
set, and we fine-tune our network trained on Kinetics to the
experiments of UCF101 and HMDB51 to make comparisons
with the state of the art. Finally, the attention regions located
by our attention models are visualized to show superiority. The
details will be discussed sufficiently in the following.

A. Experimental Setup

The HMDB51 data set is collected from various sources,
mostly from commercial movies. This data set is composed
of 3570 training clips and 1530 testing clips and organized
as 51 distinct categories. There are 70 training videos and
30 testing videos for each action class. It provides three splits
that divide all videos into different groups. We report the
average accuracy over these three splits.

The UCF101 contains 13 320 realistic action videos from
101 action categories. It also provides three standard splits and
aims at giving the largest diversity regarding actions. Similarly,
we report the average accuracy over three splits. The action
categories can be divided into five types: human–object inter-
action, body–motion only, human–human Interaction, playing
musical instruments, and sports. These videos are also grouped
into 25 groups that have a similar background.

Kinetics is a high-quality data set collected from YouTube.
It consists of approximately 500k video clips and provides
a training set, a validation set, and a testing set. In this
article, we reported experimental results on a testing set of
the latest version of Kinetics-600. To make a fair comparison
with the previous methods, we also reported accuracies on
Kinetics-400� that is constructed by selecting the overlapping
videos between Kinetics-600 and the official released version
Kinetics-400.

B. Analysis of Attention Mechanism

In this section, to demonstrate the effectiveness of two types
of attention, we evaluate the performance of models with a
GP layer or two types of attention individually, called the
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Fig. 7. Results of per-class actions on HMDB51. The lengths of red, green, and blue bars are confidences produced by the GP model, the SA model, and
the LA model, respectively. This figure shows that different models work better on particular actions, such as GP model is good at action Walk, SA is good
at action Hug, and LA is good at action Laugh.

TABLE I

ANALYSIS OF TWO TYPES OF

ATTENTION MECHANISM

GP model, SA model, and LA model, respectively. The GP
model and two attention models have the same structure except
for the attention part. As the GP layer directly computes the
average value of each feature map, it can be considered to
learn global information.

Experimental results of three models on HMDB51 and
UCF101 are listed in Table I. As shown in Table I, two
attention models show significant improvements in both data
sets compared with the GP model. The SA model improves
the results by 1.11% and 0.59%, while the LA model improves
the results by 1.37% and 1.85% on HMDB51 and UCF101,
respectively, which demonstrates the effectiveness of two
types of attention mechanism. It worth to mention that com-
pared with the SA model, the LA model converges faster
in training time. It suggests that the network with learning
ability can quickly focus attention on various regions of
video frames.

To further verify whether there is a complementary advan-
tage between different models, Fig. 7 shows the results of per-
class action. It can be seen that different models work better
on particular actions, such as GP model is good at action
Walk, SA is good at action Hug, and LA is good at action
Laugh. We speculate that there may be implicit complementary

advantages of combining global and detailed local information.
In the following, global and local representations are investi-
gated in various ways.

C. Analysis of Global and Local Information Fusion

In this section, we explore the complementary advantages of
global and detailed local information. Intuitively, GP directly
computes the average value of each feature map and treats
various parts equally to make the prediction from the global
perspective, while attention models attend the most discrim-
inative parts and make the prediction depending on action
details. Based on this, we make the combination to exploit
abundant benefits brought by the fusion of global and local
information. Here, we introduce two composite features, where
GP representation is fused with SA representation (GS) or
with LA representation (GL) at the feature level and the
score level. Fusion at the feature level has four forms (max,
multiply average, and concatenation), while score fusion has
the average form.

Base convolutional layers and two attentions well-trained
in Section IV-B are used to extract global and local repre-
sentation. Their parameters are frozen in training time, and
recurrent models are trained for modeling dynamics. Results
in Tables II and III show that the performance is boosted
by a large margin in two cases of feature concatenation
and score fusion. GL using score fusion achieves the best
results, where the maximum of improvement is 4.12% on
HMDB51 and 2.73% on UCF101, which shows that there are
implicit complementary advantages between GP representation
and attention representation. Meanwhile, models using score
fusion or feature concatenation achieve comparable results,
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TABLE II

ANALYSIS OF GLOBAL AND SA
INFORMATION FUSION

TABLE III

ANALYSIS OF GLOBAL AND LA INFORMATION FUSION

TABLE IV

ANALYSIS OF GA REGULARIZATION

which justifies that the main improvements of feature con-
catenation may be derived from the fusion of two networks.
It may also indicate that feature concatenation could exploit
the advantages of fusion of attention and global information
although they are interrelated with each other. As the model
using feature concatenation has fewer parameters, therefore,
our fusion strategy can efficiently exploit global knowledge
and detailed local knowledge and obtain the effective video-
level representation.

D. Analysis of GA Regularization

In this section, we evaluate the effect of GA regularization
applied to two composite features and GP features. In this
case, the GP model is used as the reference. Intuitively, with
the help of global information, two attention streams would
better model the dynamics of composite features. Similar to
the previous experimental settings, all parameters of spatial
feature extract parts and attention parts are frozen, and we only
optimize recurrent models of two attention streams. Results
in Table IV show that GA regularization contributes to improv-
ing performance on two data sets. On HMDB51, the best
improvement is achieved by GL, and the best improvement
is achieved by GS on UCF101, where improvement of the
accuracy is 0.27% and 0.87% on HMDB51 and UCF101,
respectively. It illustrates that GA regularization can guide our
recurrent network to model dynamics more reliable with global
information as a reference.

TABLE V

ANALYSIS OF DIFFERENT FUSION MODELS

E. Analysis of Different Fusion Models

In this section, we investigate the different fusion methods
for global and local information. GS and GL are the same
as those of the three aforementioned cases, as described in
Section IV-C. In the late fusion model, the softmax scores
derived from different models, as illustrated in Fig. 6, are
directly fused to make the final prediction by using three forms
(max, multiply, and average). The symbol “+” represents
the prediction score fusion of different features, including
two composite features and global features, as illustrated
in Fig. 2.

From Table V, we can see that the late fusion model and
early fusion model achieve comparable results and improve
the performance by a large margin on both data sets com-
pared with a single model. In the case of the late fusion
model, where different types of representations are fused
directly without the concatenation layer and GA regularization,
the max improvement is 5.03% and 4.26% on HMDB51 and
UCF101, respectively, compared with GP model. Compared
with the early fusion model (GS + GL), when incorporating
global information, the early fusion model (GS + GL + GP)
improves accuracies by 1.70% and 0.42% on HMDB51 and
UCF101, respectively. Their cooperation outperforms either
of them, which demonstrates that two attention representation
and the GP representation may be complementary to each
other in a way. In the following, the early fusion model
(GS + GL + GP) is used to compare with the state-of-the-
art models.

F. Comparison With the State of the Arts

Finally, to verify the effectiveness of our model on the large-
scale data set of action recognition, we perform experiments
on Kinetics and report top-1 and top-5 and average accuracies
on Kinetics-600 and Kinetics-400�. The accuracies of other
algorithms in Table VI are copied from original articles that
mainly take RGB frames as inputs. 3-D ResNeXt-101 [21]
designed a residual 3-D CNN to take advantage of deep 3-D
features. Our model outperforms 3-D ResNeXt-101 by 4.1% at
top-1 accuracy of the experiment on Kinetics-400�. Note that
the accuracy of I3D-RGB [46] is lower than ours by 0.8%
at the top 1 accuracy on Kinetics-400�, but when combined
optical information, two-stream I3D achieves superior perfor-
mance. This demonstrates that the optical flow can provide
complementary advantages from the perspective of motion,
and we speculate that the performance of our model would
also be boosted when incorporating optical flow information.
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TABLE VI

COMPARISON OF THE NETWORKS TAKING RGB
FRAMES AS INPUTS ON KINETICS

Meanwhile, we fine-tune our network trained on Kinetics
to the experiments on UCF101 and HMDB51. The classifi-
cation accuracies listed in original articles on HMDB51 and
UCF101 are summarized in Table VII. First, compared with
I3D, our model highlights the discriminative part of actions,
which may be complementary to I3D with appearance and
motion streams. When combined with I3D, our model achieves
state-of-the-art performance on UCF101 and very competitive
performance with the state-of-the-art model on HMDB51.
This shows that the attention stream is effective for action
recognition. Second, our model outperforms recent RNN-
based approaches by a large margin. The most relevant work
to ours is the spatiotemporal attention model, i.e., recurrent
spatial-temporal attention network (RSTAN) [48]. It uses an
attention-driven appearance-motion fusion strategy to integrate
appearance and motion streams into a unified model, which
achieves 70.5% and 94.6% on HMDB51 and UCF101, respec-
tively, while our model outperforms RSTAN by 10.6% on
HMDB51 and 3.6% on UCF101, which may demonstrate
that our model can learn more discriminative features. PoTion
[20] extracts pose motion from video frames to construct the
third modality, which may be complementary to appearance
and motion modalities. Compared with PoTion, our attention
stream is more complementary to the traditional two-stream
network, achieving a better result on HMDB51. Third, deep
networks with temporal pyramid pooling (DTPP) [49] and
PoTion [20] only got comparable performance on one data set,
HMDB51 or UCF101, respectively. However, our model may
get comparable performance on both data sets. In the future,
a great effort may be devoted to investigating the impact of
other modalities, e.g., pose or audio.

Table VIII displays the experimental results of the models
employing attention mechanisms. Our model achieves the best
results compared with other models. RSTAN [48] introduces
a spatial–temporal attention module to identify which part or
frame is important. Although it achieves the promising perfor-
mance, our proposed model can make further improvements
by 10.6% and 3.6% on both data sets, respectively. This may
indicate that our model can focus on important regions relevant
to actions. STAN [37] derives temporal attention from the
holistic consensus across the frame, optical flow, and clip
modalities, and it achieves 93.6% on UCF101. Our model
outperforms it by 4.6% although we do not decide which
frame is essential explicitly. S3D-G [68] replaces many of the

TABLE VII

COMPARISONS WITH THE STATE OF THE ARTS
ON HMDB51 AND UCF101

TABLE VIII

COMPARISON OF NETWORKS WITH ATTENTION

3-D convolutions by low-cost 2-D convolutions and introduces
a feature gating mechanism to build an efficient network.
Although it achieves the promising performance, our proposed
model can make further improvements by 2.9% and 1.4% on
both data sets, respectively.

G. Spatial Attention Visualization

To better understand the effectiveness of our two types of
attention, we visualized attention regions on which statistic-
based and LA focus. As illustrated in Fig. 8, it is clear that two
types of attention help the network focus on the most relevant
parts. Both statistic-based and LA can locate the most relevant
parts, the bike and body for action Biking, and the body
for action SkyDiving, which contributes to making correct
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Fig. 8. Correct illustration of our SA and LA. These images are cropped from raw video frames centrally. Frames in the second and third rows of each
action display the attention regions (white) produced by SA and LA, respectively. One can see that both statistic-based and LA can locate the most relevant
parts, the bike and the body for action Biking, the body for action SkyDiving, the body and the golf club for action Golf, and hands for action Clap.

Fig. 9. Incorrect illustration of our SA and LA. One can see that attention attends the body and baseball bat for action Swing baseball and hands for action
Wave, respectively. Our models are confused with these two action groups, Swing baseball and Golf, Wave, and Clap due to the similarities of them and
make incorrect predictions.

predictions. However, when attention attends the body or the
region between two hands that are irrelevant to action Swing
baseball or Wave, as shown in Fig. 9, our model classifies
the action Swing baseball as Golf and action Wave as Clap
incorrectly. Because both actions Swing Baseball and Golf use
a bat to hit a ball and both actions Wave and Clap are acted by

swinging hands, substantial similarities between these actions
perplex our models. In the future, we will address this issue by
the auxiliary tasks of scene recognition, fine-grained detection,
and localization for limbs and objects.

We also compare the attention visualization results of
RSTAN [48] with those of our attention models in Fig. 10. It is
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Fig. 10. Comparisons of visualization results produced by RSTAN [48] and ours. The first row shows raw video frames, the second and third rows display
visualization results of our attention models, and the bottom row copied from the original article shows the spatial visualization results of RSTAN for given
frames. The brightness of color indicates the importance of corresponding regions.

obvious that our attention models focus attention on the person
as the action moves for ThrowDiscus, while RSTAN focuses
on sky, grass, and ground that are intuitively irrelevant to this
action. For action Dribble, our models pay attention to the
basketball and person more precise compared with RSTAN.
These illustrate that our model can capture more relevant
information.

V. CONCLUSION

In this article, we propose a novel global and local
knowledge-aware attention network for action recognition. The
experimental results demonstrate that our proposed model can
make full use of the implicit complementary advantages of
global and local information and outperforms the state-of-the-
art methods on three challenging benchmarks, i.e., Kinetics,
UCF101, and HMDB51.
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