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Abstract

This paper presents a novel, simple yet robust self-
representation method, i.e., Double Low-Rank Representa-
tion with Projection Distance penalty (DLRRPD) for clus-
tering. With the learned optimal projected representations,
DLRRPD is capable of obtaining an effective similarity
graph to capture the multi-subspace structure. Besides the
global low-rank constraint, the local geometrical structure
is additionally exploited via a projection distance penalty
in our DLRRPD, thus facilitating a more favorable graph.
Moreover, to improve the robustness of DLRRPD to noises,
we introduce a Laplacian rank constraint, which can fur-
ther encourage the learned graph to be more discriminative
for clustering tasks. Meanwhile, Frobenius norm (instead
of the popularly used nuclear norm) is employed to enforce
the graph to be more block-diagonal with lower complexity.
Extensive experiments have been conducted on synthetic,
real, and noisy data to show that the proposed method out-
performs currently available alternatives by a margin of
1.0%~10.1%.

1. Introduction

Clustering is one of the most fundamental unsupervised
problems, aiming to group samples into categories such that
samples in the same category are similar in some sense
and differentiate from those of other categories in the same
sense. It has been widely used in many areas (e.g., image
processing [31], image segmentation [31], camera source
identification [15], and data mining [29, 30, 34, 35]). Many
clustering methods (e.g., kmeans based methods [1, 24],
density based methods [4, 3], and graph based methods [2])
have been proposed. Among these methods, graph based
clustering methods (e.g., Ncut [22]), which classify the
samples according to a similarity graph, have attracted lots
of attention because of their good performance and solid
mathematical foundation. Therefore, constructing a good
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similarity graph is important for clustering algorithm to ob-
tain good clustering results.

Self-representation models are effective to construct the
similarity graph because they are proposed to exploit the
subspace structure of data. These methods base on the as-
sumption that a database with k clusters is drawn from a
union of k independent low-dimensional subspaces. Fur-
thermore, self-representation theory shows that a sample in
a subspace can be linearly represented by the other points
in the same subspace [5]. Hence, self-representation meth-
ods use the database as the dictionary and learn a similarity
graph by capturing the subspace structure.

Sparse subspace clustering (SSC) [6] is the first self-
representation method proposed to represent each data point
with a few neighbors, hence it can capture the local neigh-
bor relationship. In fact, SSC can’t learn the global struc-
ture, and the learned graph may be too sparse for clustering
[14]. In order to capture the global structure, low-rank rep-
resentation [17] was proposed to learn the low-dimensional
subspace structure with a global low-rank constraint. Com-
pared with SSC, LRR can learn a more denser similarity
graph and capture more global information [28]. How-
ever, some elements of the graphs obtained by SSC and
LRR are negative, while the similarity should be nonneg-
ative. To overcome this problem, Zhuang et al. proposed a
non-negative low-rank learning method which adopted both
low-rank and sparse constraint and could show the similar-
ity among samples directly [37]. Recently, some evidence
showed that using nuclear norm to capture the subspace
structure could lose the local intrinsic structure [10, 12].
Motivated by this, some Laplacian regularized LRR meth-
ods [11, 19, 33] were proposed to preserve the local in-
formation by learning the manifold structure embedded in
the data space. Futhermore, these LRR methods use the
original features which may contain some redundancy and
noise. To address this issue, Wen et al. proposed an adaptive
weighted nonnegative low-rank representation that used a
sparse weighted matrix to reduce the bad influence of noise
and redundancy information [28].

5320



The LRR methods mentioned above use the observed
data as the dictionary. When the observed data is insuffi-
cient or corrupted by noise, the performance of these meth-
ods may deteriorate [18]. Therefore, the latent low-rank
representation (LatLRR) [18] was proposed to represent the
data using both observed and unobserved data. Although
LatLRR performs better than LRR in matrix recovering, it
still ignores the structure of the feature. In order to learn the
relationship among samples and features sufficiently, the
double low-rank representation was proposed [32], which
performs better than LRR and LatLRR in face recognition.
In fact, DLRR uses a global low-rank constraint to learn the
structure among the samples and ignores the local structure;
in addition, DLRR may not learn the optimal projection
since it doesn’t take the class information into account. To
address these issues, a novel double low-rank representation
model, i.e., double low-rank representation with projection
distance penalty (DLRRPD), is proposed in this paper, and
the major highlights of our method are as follows,

e We develop DLRRPD: a Double Low-Rank Represen-
tation with Projection Distance penalty, to improve the
discrimination and robustness of similarity graph for
clustering tasks.

e An additional projection distance penalty is intro-
duced to capture both the global and local geometrical
structures, thus facilitating a sparse and discriminative
graph.

e With a Laplacian rank constraint, the robustness of
DLRRPD to noises is guaranteed, and meanwhile, the
effectiveness of the learned graph is further enhanced.

e Frobenius norm (instead of the widely used nuclear
norm) is employed to enforce the graph to be more
block-diagonal with a lower complexity, so as to im-
prove the clustering performance.

2. Related work

In this section, we will review some of the most related
works in detail and the symbols used are shown in Table.1.
Table 1. Description of the symbols used in the paper

Symbol Description
X the original feature of the database
x; the 2-th column vector of X
xt the 4-th row vector of X
Ti g the element on the ¢-th row and j-th column of X
xT the transpose of X

tr(X) the trace of X
x-1 the inverse of X
1 X1 the L1 -norm of X

|1 X1 F the Frobenius norm of X
X 2,1 the L2 1-norm of X
[ X ]| the nuclear norm of X
[|lzi]l2 the Lo-norm of z;
1 the vector in which elements are 1
® the element-wise multiplication
rank(X)  the rank of X

I the identity matrix

Given a dataset X = [z, ¥9, 3, ..., T,,] € R¥*™, where
x; € R¥1 is i-th sample with d dimension and n is the
number of samples. LRR aims to learn the linear represen-
tation with the lowest rank and can be formulated as

win [ 2] + Al B2, 58X = XZ+E (1)

where Z is a representation matrix that is also called simi-
larity graph, E is the reconstruction error matrix, and A is
a parameter to balance the effect of different terms. In fact,
only the given data is used as the dictionary by LRR but
there still exit many unobserved samples. Based on LRR,
LatLRR uses both the observed and unobserved data as the
dictionary. And the objective function of LatLRR model is

min 1 Z||«+ | Pll«+ A El1,5t.X = XZ+PX+E (2)

where X Z is the principal features, and PX can learn the
salient features. Although LatLRR can capture the princi-
pal features and the salient features simultaneously, some
relationships among feature dimensions are missed. There-
fore, DLRR aims to capture structure among samples and
features as follows,

min | Z|. + | Pl + M| E|l1,st.X = PXZ+E (3)
Z,PE

where P is a projection matrix that can learn the structure
in features (column space), and the similarity graph Z can
capture the structure among the samples (row space). How-
ever, DLRR uses a global low-rank constraint to capture the
global structure and ignores the local structure. Besides,
DLRR doesn’t use class information to guide the projection,
and thus the learned projection maybe not the most suitable
one. To address these problems, a novel DLRR method, i.e.,
DLRRPD,; is proposed in this paper.

3. Double low-rank representation with projec-
tion distance penalty

As previously analyzed, constructing a good similar-
ity graph is an effective way to improve clustering perfor-
mance. To improve the quality of the similarity graph, three
strategies have been introduced to make the graph more dis-
criminative and robust.

3.1. DLRRPD: Formulation

The formulation of DLRRPD is introduced in this sec-
tion. Since the nearby samples have a high possibility from
the same cluster, the similarity graph should capture this
neighbor relationship structure (local structure). Motivated
by this, a projection distance penalty is used to capture
more local information. Then, a Laplacian rank constraint
is adopted to make use of the class information. Therefore,
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the initial model of DLRRPD with nuclear norm can be for-
mulated as

A
min > I1Pa; = Paglz; +5 (121 + I|PIl)
1,7

projection distance penalty ( 4)
+)\2||EH1, StX:PXZ+E,

rank(Lz) =n—k, Z>0, z,=0, Z1=1

Laplacian rank constraint other constraints

where Px; denotes the x; in the projection space and Lz is
the Laplacian matrix of Z obtained by Ly = Dy — W,
Dy = diag(sum(Wz)) and Wy = (Z + ZT)/2. Z > 0
can make sure that each element is positive and satisfies the
physical meaning of similarity. z;; = 0 is used to avoid
the influence of self-representation. z°1 = 1 can avoid the
extreme case that elements of any row of Z are all zeros.
By jointly adopting the two constraints, model (4) holds the

following good properties:
e Introducing the projection distance penalty has sev-

eral good properties: 1) as the graph Z > 0, this
penalty can be regarded as a weighted sparse regular-
ization!, which can ensure the sparsity and locality;
2) model (4) can simultaneously learn the local and
global structure to obtain a more discriminative graph;
3) the leaned graph can guide the projection learning.

e The Laplacian rank constraint can ensure that the
graph Z consists of k connected components corre-
sponding to k clusters, which is an optimal clustering
structure.

e By combining these two terms, the projection learning
can be guided with clusters. Consequently, the sam-
ples in the same cluster are nearby in the projection
space with high similarity. This can further alleviate

the adverse effects of noises.
Model (4) learns the subspace structure by minimizing

nuclear norm. However, some theoretical analyses and ex-
perimental evidence have pointed out that Frobenius norm
is another convex surrogate of low-rank constraint [21].
Furthermore, theoretical states that the Frobenius norm sat-
isfies the enforced block diagonal conditions [20], which
improves the performance by making the graph more block-
diagonal. By taking advantages of Frobenius norm, model
(4) can be reformulated as the following problem

. AL
min 3" 1Pas = Payll3zi; + 20121 + I1PI3)

%,J

Frobenius norm ( 5)

+>\2||EH1, StX:PXZ+E,
rank(Lz) =n—k,Z > 0,2, = 0,2'1=1

'If we define d; ; = || Pz; — Px;||3, it is obvious that > 1Pz —
Pz;j|3zi,; = D © Z|h

Using Frobenius norm can bring two additional benefits.
First, using Frobenius norm can make the graph coefficients
of correlated samples be approximately equal to avoid a
too sparse graph. Second, while nuclear norm should be
solved by SVD which needs lots of computational cost, us-
ing Frobenius norm can reduce the computational cost be-
cause it can be solved by derivation.

For convenience of calculations, we rewrite model (5) as

A
: T pT A 2 2
Zr?;%Ztr(PXLzX P+ B (12117 + [1P]%)

“XlBlL, stX=PxZ+E, ©
rank(Lz) =n—k,Z > 0,2, =0,2'1 =1
Next, we provide the optimization procedures of DLRRPD.
3.2. DLRRPD: Algorithm

In this section, the proposed model is solved using the
alternating direction method of multipliers (ADMM). Since
it is difficult to solve problem (6) directly, problem (6) can
be relaxed according to [9] as

A
. T pTy | AL 2 2
z,rzral,%l,FZtr(PXLZX PY) + B (1211 + [ Pll#)

X Bl + 2ste(FTL,F), s4.X = PXZ + B, (D
Z>0,FTF=1,2,=0z:1=1
where F' € R™*k. A variable S is introduced to separate

(7) as

A1
in 2u(PXLsX"P")+ = (|Z]3
g 20(PXLsXTPY) + (1 2]+

IPI3) + Al Ell + 20t (FTLsF), (g
st.X=PXZ+E,S>0,FTF=1,5,=0,
$1=1,Z=28

Then the corresponding augmented Lagrangian function of

Eq.(8) is

A
min_ 2e(PXLs X" PT) + (1 2%

Z,P,E,S,F

+[|P||1%) + M| | E||1 + 2Xstre(FTLsF)+  (9)
W Cy Co
FUX—PXZ—E+ Tk +12 -5+ F)

where C7 and C5 are Lagrange multipliers, and p is a pos-
itive penalty parameter. Using the alternative update strat-
egy, the objective function (9) can be divided into the fol-
lowing subproblems:

Update Z: Fixing S, P, E and I, Z can be updated by
solving the following problem:

A c
min 22|/} + 51X - PXZ— B+ [+

Cs
I

(10)

1Z =8+ —=%)
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By setting the derivative of Eq.(10) to zero, Z can be up-
dated as

Z = (MI+pul + u(PX)'PX) 'u(Ly + Ly) (1)
where L, = (PX)T(X —E+Cy/p)and Ly = S — Cy/pu.

Update S: When Z, P, FE and F are fixed, S can be
computed by minimizing the following formula,

SZO,Si'i:(),Sil:l

min Z |Px; — P%‘”%Si-jJr
)

(12)
C
str(FT LsF) + guz — S+ fn%
Formula (12) can be rewritten as
i Px; — P35 4
52075111,1;1;%,31'1:1 lzj: || . i HQS ’]+
’ (13)

w Cs
As D N fi = Fill3sis + Shz -5+ 7”%«“

4,J

In order to simplify the calculation, we define that ¢; ; =
|Pz; — Px;||3 and h; ; = || f; — f;||3, and then this sub-
problem can be rewritten as

min ~ Aotr(QTS) + Astr(HTS)
$§>0,s;,;=0,s"1=1

(14)
B, gy C2po
+2\|Z S+ u”F

To improve the efficiency, problem (14) can be solved by
two steps. Firstly, a latent solution S can be obtained by
minimizing following problem,

min Aotr(QT'S) + Astr(HT'S)

15)
I Ca 9 (
2Nz — =2
+512 -5+ =2

This formula has a closed solution as

- Cy— X2@Q — \sH

Sz BT (16)

I
Then we can obtain S by solving following problem,
min _||S-S[% 17)

S§>0,8; ;=0,st1=1

This problem can be regarded as n independent sub-
problems, and it can be calculated as

s' = max(c'1; + 5,0) (18)

where ii is a vector that the i-th element is 0, and the other
elements are 1. o is the Lagrangian multiplier which is de-
fined as

o' =(1+351)/(n-1) (19)

Update F': F' can be obtained by solving the following
problem with the other variables fixed.

min tr(FTLgF),st. FTF =1 (20)

This problem has a close solution which is the set of k
eigenvectors corresponding to the first k£ smallest eigenval-
ues of Lg.

Update P: When the other variables are fixed, P can be
updated by solving the following sub-problem,

A
min 2(PX Ls X" PT) + 2| P[5+

21)
Bix-pPxz-e+Y2
2 2
This problem can be directly solved as
P=uLsZ"XTL;? (22)

where Ly = X — E+Cy/pand Ly = M\ I +4XLsXT +
uXzZ7ZTXT,

Update E: E can be obtained with the other variables
fixed as

G

. E _ . 2
min M| Bll+ GIX ~ PXZ— B+ LR @3)
This problem can solved directly by
EZQ)\Q/H(X—PXZ-FCl//J) 24)

where €2 is the shrinkage operator mentioned in [16].
Update the other parameters: Penalty parameter p, la-
grange multipliers C; and C can be updated as follows,

fr = min(pp, fimax) (25)
C,=C,+uX — PXZ—E) (26)
Oy =Cy +p(Z - 8) @7

where p and i, 4, are two constants. The proposed solution
of model (9) is summarized as Algorithm 1.

4. Analysis of our method

In this section, we further analyze the computation com-
plexity, convergence, and connections to other methods.

4.1. Complexity and convergence analysis

DLRRPD is solved as Algorithm 1 that contains five
main steps, i.e., step 3-7. Step 3, 4 and 6 use inverse opera-
tion, so their computational complexities are O(n?), O(n?)
and O(d?), respectively. Step 5 is updated by eigendecom-
position whose computational complexity is O(kn?). Since
step 7 is solved by singular value thresholding, its compu-
tational complexity is O(n?). Then we can know that the
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Figure 1. Convergence curve of our DLRRPD on Auto, Cars and Glass, in which all classes of each database are selected.

Algorithm 1: Solving DLRRPD

Input: Data matrix X and parameters A1, A2, A3
Output: Z,P,S,E,F
1 Initialization: Initializing Z by constructing the
k-nearest neighbor graph, initializing F’ by Eq.(20),
S=ZP=IE=X-PXZ,C1=0,C2=0
p=0.01, p=1.1, ptmar = 10%;
2 while not converged do
3 Update Z by Eq. (11);
4 Update S by Eq. (18);
5 Update I by Eq. (20);
6
7
8

Update P by Eq. (22);
Update E by Eq. (24);
Update u, C1 and C3 by Eq.(25)(26)(27);

computation complexity of our method is O(7(d> + 3n> +
kn?)), where 7 is the number of iterations.

Our DLRRPD uses ADMM methods to get the solution,
and it’s a five-block ADMM problem. The strong convex
of two-block ADMM has been proved in [13, 8], but as
far as we know, it is still unrealistic to prove the five-block
ADMM is convex. Hence, we will prove the convergence of
our method empirically. In order to show the convergence,
the objective function value with respect to the number of it-
erations is shown in Fig.1. The objective function value can
be obtained by Obj = (2u(PXL,XTPT) + AL(||Z||% +
IPII2) + AollElls + 2Aate(FTL2 F))/||X[[%. As shown
in Fig.1, the objective function value of DLRRPD mono-
tonically decreases until the local optimal point, and it is
obvious that the proposed method can converge fastly.

4.2. Connections to other methods

In this section, the connections among the proposed
method and two most related methods (i.e, DLRR, and
RSEC) are analyzed.

Connections to DLRR: The model of DLRR is shown
as Eq.(28).

min 1 Z]L+ [Pl + N El,s£.X = PXZ+ E ()

Compared with DLRR, there are lots of improvements in

DLRRPD. Firstly, a projection distance penalty is intro-
duced to DLRRPD to capture more local structure, which
makes the graph more discriminative. Then a rank con-
straint is adopted to DLRRPD to make sure that the sim-
ilarity graph contains k£ connected component. More-
over, Frobenius norm is used to learn a better graph with
lower computational complexity. Hence, DLRRPD per-
forms much better than DLRR.

Connections to RSEC: The model of RSEC is shown as
Eq.(29).

min tr(FXLzF) + M| Z]|« + A2 Bll2.1,
Z,F,E (29)
stX=XZ+E FT'F=1I

As shown in Eq.(29), RSEC can be regarded as a special
case of DLRRPD. If we set the P = I and remove the dis-
tance penalty, then DLRRPD will degrade to RSEC with
Frobenius norm. Compared with RSEC, DLRRPD intro-
duces a distance penalty to preserve more intrinsic struc-
ture and adopts projection learning to learn a better feature.
Moreover, DLRRPD uses z; ; = 0 and 21 = 1 to avoid the
trivial solution. Thus, DLRRPD can achieve better perfor-
mance.

5. Experiments and analysis

In order to show the effectiveness of our method, some
experiments are conducted on synthetic, real and noisy
databases. Here, the performances of DLRRPD and sev-
eral related algorithms, i.e., Ncut [23], SSC [7], LRR [17],
LatLRR [18], DLRR [32], NSLLRR [33], FLLRR [25],
AWNLRR [28], LRRAGR [27], RSEC [26] and LapNR
[36] are compared through the experiments.

Necut is a classical clustering method that is always used
as the baseline of clustering. Moreover, Ncut is also used
to handle the similarity graph obtained by other methods.
SSC, LRR, LatLRR, DLRR, and FLLRR are five basic self-
representation methods. NSLLRR, AWNLRR, LRRAGR,
RSEC, and LapNR are five improved methods that can
achieve better performance. To make it fair, each method‘s
parameters are varied in a wide range to find the best per-
formance. Moreover, all experiments are conducted on a
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Figure 2. Experimental results on the two-moon database.

PC with Intel Core 17-10700 CPU @ 4.6GHz 32G.

5.1. Experiments on two-moon database

In this section, a synthetic database, i.e., the two-moon
database shown in Fig.2(a), is used to evaluate the methods.
Here different colors of dots represent different clusters. It
can be seen that some samples in different clusters are close.
As shown in Fig.2(b) - Fig.2(1), while the comparison meth-
ods are misled by the nearby sample in the different clusters,
our DLRRPD can obtain the ground truth because it can
preserve more intrinsic structure by the projection distance

penalty.
Table 2. Description of the databases

Type Database Samples Dim Classes
Auto 205 25 6
Cars 392 8 3
ucI Contral 600 60 6
Glass 214 9 6
Isolet 1560 617 2
Dig 1797 64 10
Handwritten =~ USPS 1000 256 10
MNIST 1000 256 10
Jaffe 213 676 10
Face MSRA 1799 256 12

Umist 575 645 20

5.2. Experiments on real databases

In this section, eleven real databases are used to evaluate
the performance of all the methods mentioned above. These
databases include five UCI databases: Auto, Cars, Con-
trol, Glass, and Isolet, three handwritten databases: Dig,
USPS, and MNIST, three face databases: Jaffe, MSRA, and
UMIST. The details of these databases are shown in Table
2. For comparison purposes, three typical performance met-
rics are used: accuracy (ACC), normalized mutual informa-
tion (NMI) and F1-score.

The clustering performance is shown in Table 3, and we
can conclude as:

e Overall, DLRRPD achieves very competitive and sta-
ble performance compared to most compared methods.
Taking the image databases, handwritten databases and
Isolet with large dimension feature for example, DL-
RRPD can significantly outperform the other meth-
ods. For the Umist database, the proposed DLRRPD
achieves more than 10% scores of ACC in comparison
with LRRAGR (the second-best method). Moreover,
the proposed method can also obtain higher ACC than
other methods on the remaining databases. This indi-
cates that projection learning can capture the important
features and reduce the redundant information of the
high-dimensional data.

e From the comparison between LatLRR and FLLRR,
we can find that FLLRR performs better in most cases.
Since FLLRR improves LatLRR by using Frobenius
norm instead of nuclear norm, this phenomenon proves
that Frobenius norm is more efficient than nuclear
norm in clustering.

e With respect to NSLLRR, LRRAGR, AWNLRR and
LapNR, our proposed DLRRPD often shows better
performance. This fully demonstrates our DLRRPD
captures the actual structure among the samples using
the projection distance penalty.

e In addition, DLRRPD consistently performs better
than RSEC on almost the database. RSEC just intro-
duce a rank constraint to LRR to make sure the learned
graph contains k connected components. This can
show the effectiveness of using class information. DL-
RRPD uses the class information to jointly guide the
projection learning and graph learning, hence a more
discriminative graph can be obtained leading to better
performance.

In summary, these observations validate the efficacy of
our projection distance penalty, the Laplacian rank con-
straint and Frobenius norm. With the integration of the
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Table 3. Clustering results on real databases

Database = Metric ~ Ncut SSC LRR LatLRR DLRR FLLRR NSLLRR AWNLRR LRRAGR RSEC LapNR DLRRPD

ACC 4195 40.00 4098 4146 4146 4146 41.95 40.98 39.02 4439 4146 46.83
Auto NMI 1922 1630 1661 1722 1727 1722 18.39 18.57 16.67 17.86  17.82 20.53
FI 3253 3332 3405 3462 3247  34.62 3348 32.46 34.20 3516 32.36 36.70
ACC 4872 6199 6276 6276 6276  61.99 63.52 66.33 62.76 63.01  57.14 68.37
Cars NMI 2201 133 455 455 455 1.33 6.83 20.97 20.09 2253 23.99 24.07
Fl 4860 6258 63.17 63.17 6317  62.58 63.67 66.04 59.25 5892 50.54 66.18
ACC 5150 54.83 48.17 4733 7400 4083 65.00 53.17 56.83 5433 37.83 76.33
Control ~ NMI 6711 6959 6337 6111 6151  58.09 61.37 61.13 71.94 6242 67.81 7478
FI 5835 6439 5725 5577 6203  52.58 62.11 53.47 68.10 5761 54.28 68.85
ACC 5421 4860 5327 5187 4766 5140 57.48 54.67 55.61 5467 5374 58.48
Glass NMI 3958 3526 33.13 3922 2505 3828 39.87 43.75 45.90 38.87  38.99 39.91
FI 4408 4218 4022 4165 4305 4116 48.70 49.17 51.05 4857 4263 47.09
ACC 5558 5429 5600 5564 5712 54.10 59.36 58.40 54.49 6295  58.65 67.37
Isolet NMI 090 060  1.03 0.93 1.48 0.49 2.60 2.07 0.59 4.93 2.28 9.00
FI 5062 5216 5060 5077 5111 5031 5175 51.53 50.51 5343 5224 56.15
ACC 7685 1408 79.13  79.12 6077  78.95 67.78 79.86 59.32 7919  76.02 88.81
Dig NMI 7151 138 77.11 7402 4805 7452 71.85 84.27 70.47 76.83 7893 88.81
FI 6771 1015 7285 7112 4335 7163 63.23 76.90 4525 7232 7170 83.22
ACC 5630 5670 5540 4880 3380  55.80 56.00 61.60 55.70 5570  64.00 68.20
MNIST  NMI 4772 5832 5095 4721 2640  50.44 54.74 59.70 59.61 5191  61.33 66.15
FI 4236 49.15 4396 4061 2498 4347 46.66 50.78 45.16 4454 5352 59.79
ACC 4950 5250 5330 5060 3370  49.10 54.20 55.00 40.90 5380  57.20 59.90
USPS NMI 4378 5246 4997 4677 2657 4697 48.76 55.75 50.15 50.66  55.55 55.58
Fl 3696 4267 4382 4076 2466  39.82 42.35 46.81 38.90 4433 4724 47.82
ACC  90.00 9671  99.53 100 75.12 100 99.53 98.59 98.59 100 98.12 100
Jaffe NMI  87.57 9599 99.18 100 71.66 100 99.17 97.52 98.16 100 97.36 100
Fl 8245 9362 99.05 100 62.63 100 99.03 97.11 97.10 100 9632 100
ACC 5264 6092 6587 6376  39.02 6581 69.65 55.98 55.98 6971  61.42 72.98
MSRA  NMI 5795 7348 7358  69.10 4405  72.50 74.99 62.63 71.08 7073 74.79 7371
FI 4275 5206 5547  S1.65 3391 5527 61.49 4741 46.20 5506 55.13 63.31
ACC 4783 6243 4557 3983 2939 4383 55.48 65.39 69.91 4574 53.04 80.17
Umiss  NMI 6262 7750 6130 6190 4407 5991 72.50 80.85 82.95 6526  70.51 89.57
Fl 3825 5335 3536 3091 2132 3411 42.12 58.90 59.35 3976 45.49 7273

+The variances of experiments are all 0.

above factors, the proposed method achieves better perfor-
mance than the other methods.

5.3. Image clustering against corruptions

In this section, the robustness property of our DLRRPD
is explored. Here, MSRA and UMIST databases are used
to evaluate the robustness. For computational efficiency, we
select the first 10 samples of each class to construct two
sub-databases. In the experiments, salt & pepper noise with
a fixed percentage is added to the image, which may break
the distance relationship among samples. The clustering re-
sults of noisy data are shown in Fig.3 in which the noise
percentage is set to [0, 10, 20, 30, 40, 50], and some noisy
images are also shown. We can find that: 1) the ACC de-
creases monotonically when the noise level is increased; 2)
our DLRRPD achieves higher accuracies than other meth-
ods under different noise levels. Specifically, DLRRPD de-
grades slower than other methods with the percentage in-

creasing, which means that our DLRRPD method is more
robust than other methods for salt & pepper noise. More-
over, Fig.4 shows some original faces, noised faces and re-
covered faces.”> We can see that DLRR and DLRRPD can
recover images accurately because of projection learning.
In particular, by utilizing class information, DLRRPD ob-
tains the best recovery, proving the robustness of DLRRPD.

5.4. Parameter sensitivity and selection

As shown in model (9), the proposed DLRRPD con-
tains three parameters, i.e., A\;, A2 and A3, which bal-
ance the low-rank constraint, error and Laplacian rank con-
straint, respectively. In this section, we test the sensi-
tivity of these three parameters by performing the pro-
posed method with different combinations of three param-

2More results are shown in supplementary materials.
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Figure 3. Clustering performance vs. varying percentage on MSRA (left) and UMIST (right) databases.
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Figure 4. Results about recovering the face from n01sed images. The resulted images of each row are recovered from noised images with

10%, 30% and 50% salt & pepper noise, respectively.

eters, and each parameter is varied in a wide range, i.e.,
[107°,1074,1073,...,10%,10°]. First, we fix A3 = 10~}
and tune \; and Ao, thus the sensitivity of Ay and A3 as
Fig 5(a). Then, A; and A\, are fixed, and the influence
of A3 is showed by performing the proposed method with
different A3 on the Jaffe database. As shown in Fig 5(b),
we can find that DLRRDP can deliver good results with
A3 < 10°. We can find that DLRRDP can deliver good
results with A; < 1072 and X, < 10~2. However, find-
ing a suitable combination of parameters is still an open
problem, and we just confirm that the most suitable pa-
rameters in our method can be found in a small range, i.e.,
[107°,107%,103,1072].

10 10° 10! 102 10 10t 10°
A

02
10 10 10?102

Figure 5. Parameter sensitivity analysis of DLRRPD on the Jaffe,
where (a) fix A3 to tune Ajand A2; (b) fix A1 and A2 to tune A3

6. Conclusion and future work

A novel self-representation learning model, i.e., Double
Low-Rank Representation with Projection Distance penalty
(DLRRPD), is proposed in this paper. It adopts a pro-
jection distance penalty to exploit more intrinsic structure,
thus making the model preserve both the global and local
structures. And then, a Laplacian rank constraint is em-
ployed to simultaneously guide the projection learning and
graph learning, thus facilitating a more discriminative and
robust graph. Moreover, using Frobenius norm instead of
the widely used nuclear norm, we can obtain a more block-
diagonal graph with lower complexity.

The effectiveness of our DLRRPD has been evaluated on
several benchmark databases for data clustering. The clus-
tering of the data with salt & pepper noise can also show
the robustness of our method. In the future, we will try to
extend this model to semi-supervised and weak supervised
cases. Since labeled samples contain more prior informa-
tion, this model is promising to handle some more complex
real tasks.
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