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Abstract

This paper presents a novel, simple yet robust self-

representation method, i.e., Double Low-Rank Representa-

tion with Projection Distance penalty (DLRRPD) for clus-

tering. With the learned optimal projected representations,

DLRRPD is capable of obtaining an effective similarity

graph to capture the multi-subspace structure. Besides the

global low-rank constraint, the local geometrical structure

is additionally exploited via a projection distance penalty

in our DLRRPD, thus facilitating a more favorable graph.

Moreover, to improve the robustness of DLRRPD to noises,

we introduce a Laplacian rank constraint, which can fur-

ther encourage the learned graph to be more discriminative

for clustering tasks. Meanwhile, Frobenius norm (instead

of the popularly used nuclear norm) is employed to enforce

the graph to be more block-diagonal with lower complexity.

Extensive experiments have been conducted on synthetic,

real, and noisy data to show that the proposed method out-

performs currently available alternatives by a margin of

1.0%∼10.1%.

1. Introduction

Clustering is one of the most fundamental unsupervised

problems, aiming to group samples into categories such that

samples in the same category are similar in some sense

and differentiate from those of other categories in the same

sense. It has been widely used in many areas (e.g., image

processing [31], image segmentation [31], camera source

identification [15], and data mining [29, 30, 34, 35]). Many

clustering methods (e.g., kmeans based methods [1, 24],

density based methods [4, 3], and graph based methods [2])

have been proposed. Among these methods, graph based

clustering methods (e.g., Ncut [22]), which classify the

samples according to a similarity graph, have attracted lots

of attention because of their good performance and solid

mathematical foundation. Therefore, constructing a good
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similarity graph is important for clustering algorithm to ob-

tain good clustering results.

Self-representation models are effective to construct the

similarity graph because they are proposed to exploit the

subspace structure of data. These methods base on the as-

sumption that a database with k clusters is drawn from a

union of k independent low-dimensional subspaces. Fur-

thermore, self-representation theory shows that a sample in

a subspace can be linearly represented by the other points

in the same subspace [5]. Hence, self-representation meth-

ods use the database as the dictionary and learn a similarity

graph by capturing the subspace structure.

Sparse subspace clustering (SSC) [6] is the first self-

representation method proposed to represent each data point

with a few neighbors, hence it can capture the local neigh-

bor relationship. In fact, SSC can’t learn the global struc-

ture, and the learned graph may be too sparse for clustering

[14]. In order to capture the global structure, low-rank rep-

resentation [17] was proposed to learn the low-dimensional

subspace structure with a global low-rank constraint. Com-

pared with SSC, LRR can learn a more denser similarity

graph and capture more global information [28]. How-

ever, some elements of the graphs obtained by SSC and

LRR are negative, while the similarity should be nonneg-

ative. To overcome this problem, Zhuang et al. proposed a

non-negative low-rank learning method which adopted both

low-rank and sparse constraint and could show the similar-

ity among samples directly [37]. Recently, some evidence

showed that using nuclear norm to capture the subspace

structure could lose the local intrinsic structure [10, 12].

Motivated by this, some Laplacian regularized LRR meth-

ods [11, 19, 33] were proposed to preserve the local in-

formation by learning the manifold structure embedded in

the data space. Futhermore, these LRR methods use the

original features which may contain some redundancy and

noise. To address this issue, Wen et al. proposed an adaptive

weighted nonnegative low-rank representation that used a

sparse weighted matrix to reduce the bad influence of noise

and redundancy information [28].
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The LRR methods mentioned above use the observed

data as the dictionary. When the observed data is insuffi-

cient or corrupted by noise, the performance of these meth-

ods may deteriorate [18]. Therefore, the latent low-rank

representation (LatLRR) [18] was proposed to represent the

data using both observed and unobserved data. Although

LatLRR performs better than LRR in matrix recovering, it

still ignores the structure of the feature. In order to learn the

relationship among samples and features sufficiently, the

double low-rank representation was proposed [32], which

performs better than LRR and LatLRR in face recognition.

In fact, DLRR uses a global low-rank constraint to learn the

structure among the samples and ignores the local structure;

in addition, DLRR may not learn the optimal projection

since it doesn’t take the class information into account. To

address these issues, a novel double low-rank representation

model, i.e., double low-rank representation with projection

distance penalty (DLRRPD), is proposed in this paper, and

the major highlights of our method are as follows,

• We develop DLRRPD: a Double Low-Rank Represen-

tation with Projection Distance penalty, to improve the

discrimination and robustness of similarity graph for

clustering tasks.

• An additional projection distance penalty is intro-

duced to capture both the global and local geometrical

structures, thus facilitating a sparse and discriminative

graph.

• With a Laplacian rank constraint, the robustness of

DLRRPD to noises is guaranteed, and meanwhile, the

effectiveness of the learned graph is further enhanced.

• Frobenius norm (instead of the widely used nuclear

norm) is employed to enforce the graph to be more

block-diagonal with a lower complexity, so as to im-

prove the clustering performance.

2. Related work

In this section, we will review some of the most related

works in detail and the symbols used are shown in Table.1.

Table 1. Description of the symbols used in the paper

Symbol Description

X the original feature of the database

xi the i-th column vector of X

xi the i-th row vector of X
xi,j the element on the i-th row and j-th column of X

XT the transpose of X
tr(X) the trace of X

X−1 the inverse of X
‖X‖1 the L1-norm of X
‖X‖F the Frobenius norm of X
‖X‖2,1 the L2,1-norm of X
‖X‖∗ the nuclear norm of X
‖xi‖2 the L2-norm of xi

1 the vector in which elements are 1
⊙ the element-wise multiplication

rank(X) the rank of X
I the identity matrix

Given a dataset X = [x1, x2, x3, ..., xn] ∈ Rd×n, where

xi ∈ Rd×1 is i-th sample with d dimension and n is the

number of samples. LRR aims to learn the linear represen-

tation with the lowest rank and can be formulated as

min
Z,E

‖Z‖∗ + λ‖E‖2,1, s.t.X = XZ + E (1)

where Z is a representation matrix that is also called simi-

larity graph, E is the reconstruction error matrix, and λ is

a parameter to balance the effect of different terms. In fact,

only the given data is used as the dictionary by LRR but

there still exit many unobserved samples. Based on LRR,

LatLRR uses both the observed and unobserved data as the

dictionary. And the objective function of LatLRR model is

min
Z,P,E

‖Z‖∗+‖P‖∗+λ‖E‖1, s.t.X = XZ+PX+E (2)

where XZ is the principal features, and PX can learn the

salient features. Although LatLRR can capture the princi-

pal features and the salient features simultaneously, some

relationships among feature dimensions are missed. There-

fore, DLRR aims to capture structure among samples and

features as follows,

min
Z,P,E

‖Z‖∗ + ‖P‖∗ + λ‖E‖1, s.t.X = PXZ + E (3)

where P is a projection matrix that can learn the structure

in features (column space), and the similarity graph Z can

capture the structure among the samples (row space). How-

ever, DLRR uses a global low-rank constraint to capture the

global structure and ignores the local structure. Besides,

DLRR doesn’t use class information to guide the projection,

and thus the learned projection maybe not the most suitable

one. To address these problems, a novel DLRR method, i.e.,

DLRRPD, is proposed in this paper.

3. Double low-rank representation with projec-

tion distance penalty

As previously analyzed, constructing a good similar-

ity graph is an effective way to improve clustering perfor-

mance. To improve the quality of the similarity graph, three

strategies have been introduced to make the graph more dis-

criminative and robust.

3.1. DLRRPD: Formulation

The formulation of DLRRPD is introduced in this sec-

tion. Since the nearby samples have a high possibility from

the same cluster, the similarity graph should capture this

neighbor relationship structure (local structure). Motivated

by this, a projection distance penalty is used to capture

more local information. Then, a Laplacian rank constraint

is adopted to make use of the class information. Therefore,
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the initial model of DLRRPD with nuclear norm can be for-

mulated as

min
Z,P,E

∑

i,j

‖Pxi − Pxj‖
2
2zi,j

︸ ︷︷ ︸

projection distance penalty

+
λ1

2
(‖Z‖∗ + ‖P‖∗)

+λ2‖E‖1, s.t.X = PXZ + E,

rank(LZ) = n− k
︸ ︷︷ ︸

Laplacian rank constraint

, Z ≥ 0, zi,i = 0, zi1 = 1
︸ ︷︷ ︸

other constraints

(4)

where Pxi denotes the xi in the projection space and LZ is

the Laplacian matrix of Z obtained by LZ = DZ − WZ ,

DZ = diag(sum(WZ)) and WZ = (Z + ZT )/2. Z ≥ 0
can make sure that each element is positive and satisfies the

physical meaning of similarity. zi,i = 0 is used to avoid

the influence of self-representation. zi1 = 1 can avoid the

extreme case that elements of any row of Z are all zeros.

By jointly adopting the two constraints, model (4) holds the

following good properties:
• Introducing the projection distance penalty has sev-

eral good properties: 1) as the graph Z ≥ 0, this

penalty can be regarded as a weighted sparse regular-

ization1, which can ensure the sparsity and locality;

2) model (4) can simultaneously learn the local and

global structure to obtain a more discriminative graph;

3) the leaned graph can guide the projection learning.

• The Laplacian rank constraint can ensure that the

graph Z consists of k connected components corre-

sponding to k clusters, which is an optimal clustering

structure.

• By combining these two terms, the projection learning

can be guided with clusters. Consequently, the sam-

ples in the same cluster are nearby in the projection

space with high similarity. This can further alleviate

the adverse effects of noises.
Model (4) learns the subspace structure by minimizing

nuclear norm. However, some theoretical analyses and ex-

perimental evidence have pointed out that Frobenius norm

is another convex surrogate of low-rank constraint [21].

Furthermore, theoretical states that the Frobenius norm sat-

isfies the enforced block diagonal conditions [20], which

improves the performance by making the graph more block-

diagonal. By taking advantages of Frobenius norm, model

(4) can be reformulated as the following problem

min
Z,P,E

∑

i,j

‖Pxi − Pxj‖
2
2zi,j +

λ1

2
(‖Z‖2F + ‖P‖2F )

︸ ︷︷ ︸

Frobenius norm

+λ2‖E‖1, s.t.X = PXZ + E,

rank(LZ) = n− k, Z ≥ 0, zi,i = 0, zi1 = 1

(5)

1If we define di,j = ‖Pxi − Pxj‖
2

2
, it is obvious that

∑
i,j ‖Pxi −

Pxj‖
2

2
zi,j = ‖D ⊙ Z‖1

Using Frobenius norm can bring two additional benefits.

First, using Frobenius norm can make the graph coefficients

of correlated samples be approximately equal to avoid a

too sparse graph. Second, while nuclear norm should be

solved by SVD which needs lots of computational cost, us-

ing Frobenius norm can reduce the computational cost be-

cause it can be solved by derivation.

For convenience of calculations, we rewrite model (5) as

min
Z,P,E

2tr(PXLZX
TPT ) +

λ1

2
(‖Z‖2F + ‖P‖2F )

+λ2‖E‖1, s.t.X = PXZ + E,

rank(LZ) = n− k, Z ≥ 0, zi,i = 0, zi1 = 1

(6)

Next, we provide the optimization procedures of DLRRPD.

3.2. DLRRPD: Algorithm

In this section, the proposed model is solved using the

alternating direction method of multipliers (ADMM). Since

it is difficult to solve problem (6) directly, problem (6) can

be relaxed according to [9] as

min
Z,P,E,F

2tr(PXLZX
TPT ) +

λ1

2
(‖Z‖2F + ‖P‖2F )

+λ2‖E‖1 + 2λ3tr(FTLZF ), s.t.X = PXZ + E,

Z ≥ 0, FTF = I, zi,i = 0, zi1 = 1

(7)

where F ∈ Rn×k. A variable S is introduced to separate

(7) as

min
Z,P,E,S,F

2tr(PXLSX
TPT ) +

λ1

2
(‖Z‖2F+

‖P‖2F ) + λ2‖E‖1 + 2λ3tr(FTLSF ),

s.t.X = PXZ + E,S ≥ 0, FTF = I, si,i = 0,

si1 = 1, Z = S

(8)

Then the corresponding augmented Lagrangian function of

Eq.(8) is

min
Z,P,E,S,F

2tr(PXLSX
TPT ) +

λ1

2
(‖Z‖2F

+‖P‖2F ) + λ2‖E‖1 + 2λ3tr(FTLSF )+

µ

2
(‖X − PXZ − E +

C1

µ
‖2F + ‖Z − S +

C2

µ
‖2F )

(9)

where C1 and C2 are Lagrange multipliers, and µ is a pos-

itive penalty parameter. Using the alternative update strat-

egy, the objective function (9) can be divided into the fol-

lowing subproblems:

Update Z: Fixing S, P , E and F , Z can be updated by

solving the following problem:

min
Z

λ1

2
‖Z‖2F +

µ

2
(‖X − PXZ − E +

C1

µ
‖2F+

‖Z − S +
C2

µ
‖2F )

(10)
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By setting the derivative of Eq.(10) to zero, Z can be up-

dated as

Z = (λ1I + µI + µ(PX)TPX)−1µ(L1 + L2) (11)

where L1 = (PX)T (X−E+C1/µ) and L2 = S−C2/µ.

Update S: When Z, P , E and F are fixed, S can be

computed by minimizing the following formula,

min
S≥0,si,i=0,si1=1

∑

i,j

‖Pxi − Pxj‖
2
2si,j+

2λ3tr(FTLSF ) +
µ

2
‖Z − S +

C2

µ
‖2F

(12)

Formula (12) can be rewritten as

min
S≥0,si,i=0,si1=1

∑

i,j

‖Pxi − Pxj‖
2
2si,j+

λ3

∑

i,j

‖fi − fj‖
2
2si,j +

µ

2
‖Z − S +

C2

µ
‖2F

(13)

In order to simplify the calculation, we define that qi,j =
‖Pxi − Pxj‖

2
2 and hi,j = ‖fi − fj‖

2
2, and then this sub-

problem can be rewritten as

min
S≥0,si,i=0,si1=1

λ2tr(QTS) + λ3tr(HTS)

+
µ

2
‖Z − S +

C2

µ
‖2F

(14)

To improve the efficiency, problem (14) can be solved by

two steps. Firstly, a latent solution S̄ can be obtained by

minimizing following problem,

min
S

λ2tr(QTS) + λ3tr(HTS)

+
µ

2
‖Z − S +

C2

µ
‖2F

(15)

This formula has a closed solution as

S̄ = Z +
C2 − λ2Q− λ3H

µ
(16)

Then we can obtain S by solving following problem,

min
S≥0,si,i=0,si1=1

‖S − S̄‖2F (17)

This problem can be regarded as n independent sub-

problems, and it can be calculated as

si = max(σi
1̂i + s̄i, 0) (18)

where 1̂i is a vector that the i-th element is 0, and the other

elements are 1. σ is the Lagrangian multiplier which is de-

fined as

σi =
(
1 + s̄i1

)
/(n− 1) (19)

Update F : F can be obtained by solving the following

problem with the other variables fixed.

min
F

tr(FTLSF ), s.t.FTF = I (20)

This problem has a close solution which is the set of k
eigenvectors corresponding to the first k smallest eigenval-

ues of LS .

Update P : When the other variables are fixed, P can be

updated by solving the following sub-problem,

min
P

2tr(PXLSX
TPT ) +

λ1

2
‖P‖2F+

µ

2
‖X − PXZ − E +

µ

2
‖2F

(21)

This problem can be directly solved as

P = µL3Z
TXTL−1

4 (22)

where L3 = X −E +C1/µ and L4 = λ1I + 4XLSX
T +

µXZZTXT .

Update E: E can be obtained with the other variables

fixed as

min
E

λ2‖E‖1 +
µ

2
‖X − PXZ − E +

C1

µ
‖2F (23)

This problem can solved directly by

E = Ωλ2/µ(X − PXZ + C1/µ) (24)

where Ω is the shrinkage operator mentioned in [16].

Update the other parameters: Penalty parameter µ, la-

grange multipliers C1 and C2 can be updated as follows,

µ = min(ρµ, µmax) (25)

C1 = C1 + µ(X − PXZ − E) (26)

C2 = C2 + µ(Z − S) (27)

where ρ and µmax are two constants. The proposed solution

of model (9) is summarized as Algorithm 1.

4. Analysis of our method

In this section, we further analyze the computation com-

plexity, convergence, and connections to other methods.

4.1. Complexity and convergence analysis

DLRRPD is solved as Algorithm 1 that contains five

main steps, i.e., step 3-7. Step 3, 4 and 6 use inverse opera-

tion, so their computational complexities are O(n3), O(n3)
and O(d3), respectively. Step 5 is updated by eigendecom-

position whose computational complexity is O(kn2). Since

step 7 is solved by singular value thresholding, its compu-

tational complexity is O(n3). Then we can know that the

5323



0 20 40 60 80

Number of iteration

1

2

3

4

5

6

7

O
b

je
c

ti
v

e
 f

u
n

c
ti

o
n

 v
a

lu
e

10-5

(a) Auto

0 20 40 60 80

Number of iteration

0

1

2

3

4

O
b

je
c

ti
v

e
 f

u
n

c
ti

o
n

 v
a

lu
e

10-4

(b) Cars

0 20 40 60 80

Number of iteration

0

1

2

3

4

O
b

je
c

ti
v

e
 f

u
n

c
ti

o
n

 v
a

lu
e

10-4

(c) Glass

Figure 1. Convergence curve of our DLRRPD on Auto, Cars and Glass, in which all classes of each database are selected.

Algorithm 1: Solving DLRRPD

Input: Data matrix X and parameters λ1, λ2, λ3

Output: Z,P ,S,E,F

1 Initialization: Initializing Z by constructing the

k-nearest neighbor graph, initializing F by Eq.(20),

S = Z,P = I ,E = X − PXZ, C1 = 0, C2 = 0

µ = 0.01, ρ = 1.1, µmax = 10
8;

2 while not converged do

3 Update Z by Eq. (11);

4 Update S by Eq. (18);

5 Update F by Eq. (20);

6 Update P by Eq. (22);

7 Update E by Eq. (24);

8 Update µ, C1 and C2 by Eq.(25)(26)(27);

computation complexity of our method is O(τ(d3 + 3n3 +
kn2)), where τ is the number of iterations.

Our DLRRPD uses ADMM methods to get the solution,

and it’s a five-block ADMM problem. The strong convex

of two-block ADMM has been proved in [13, 8], but as

far as we know, it is still unrealistic to prove the five-block

ADMM is convex. Hence, we will prove the convergence of

our method empirically. In order to show the convergence,

the objective function value with respect to the number of it-

erations is shown in Fig.1. The objective function value can

be obtained by Obj = (2tr(PXLZX
TPT ) + λ1

2 (‖Z‖2F +
‖P‖2F ) + λ2‖E‖1 + 2λ3tr(FTLZF ))/‖X‖2F . As shown

in Fig.1, the objective function value of DLRRPD mono-

tonically decreases until the local optimal point, and it is

obvious that the proposed method can converge fastly.

4.2. Connections to other methods

In this section, the connections among the proposed

method and two most related methods (i.e, DLRR, and

RSEC) are analyzed.

Connections to DLRR: The model of DLRR is shown

as Eq.(28).

min
Z,P,E

‖Z‖∗ + ‖P‖∗ + λ‖E‖1, s.t.X = PXZ + E (28)

Compared with DLRR, there are lots of improvements in

DLRRPD. Firstly, a projection distance penalty is intro-

duced to DLRRPD to capture more local structure, which

makes the graph more discriminative. Then a rank con-

straint is adopted to DLRRPD to make sure that the sim-

ilarity graph contains k connected component. More-

over, Frobenius norm is used to learn a better graph with

lower computational complexity. Hence, DLRRPD per-

forms much better than DLRR.

Connections to RSEC: The model of RSEC is shown as

Eq.(29).

min
Z,F,E

tr(FTLZF ) + λ1‖Z‖∗ + λ2‖E‖2,1,

s.t.X = XZ + E,FTF = I
(29)

As shown in Eq.(29), RSEC can be regarded as a special

case of DLRRPD. If we set the P = I and remove the dis-

tance penalty, then DLRRPD will degrade to RSEC with

Frobenius norm. Compared with RSEC, DLRRPD intro-

duces a distance penalty to preserve more intrinsic struc-

ture and adopts projection learning to learn a better feature.

Moreover, DLRRPD uses zi,i = 0 and zi1 = 1 to avoid the

trivial solution. Thus, DLRRPD can achieve better perfor-

mance.

5. Experiments and analysis

In order to show the effectiveness of our method, some

experiments are conducted on synthetic, real and noisy

databases. Here, the performances of DLRRPD and sev-

eral related algorithms, i.e., Ncut [23], SSC [7], LRR [17],

LatLRR [18], DLRR [32], NSLLRR [33], FLLRR [25],

AWNLRR [28], LRRAGR [27], RSEC [26] and LapNR

[36] are compared through the experiments.

Ncut is a classical clustering method that is always used

as the baseline of clustering. Moreover, Ncut is also used

to handle the similarity graph obtained by other methods.

SSC, LRR, LatLRR, DLRR, and FLLRR are five basic self-

representation methods. NSLLRR, AWNLRR, LRRAGR,

RSEC, and LapNR are five improved methods that can

achieve better performance. To make it fair, each method‘s

parameters are varied in a wide range to find the best per-

formance. Moreover, all experiments are conducted on a
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(a) Original (b) SSC (c) LRR (d) LatLRR (e) DLRR (f) NSLLRR

(g) FLLRR (h) AWNLRR (i) LRRAGR (j) RSEC (k) LapNR (l) DLRRPD

Figure 2. Experimental results on the two-moon database.

PC with Intel Core I7-10700 CPU @ 4.6GHz 32G.

5.1. Experiments on two­moon database

In this section, a synthetic database, i.e., the two-moon

database shown in Fig.2(a), is used to evaluate the methods.

Here different colors of dots represent different clusters. It

can be seen that some samples in different clusters are close.

As shown in Fig.2(b) - Fig.2(l), while the comparison meth-

ods are misled by the nearby sample in the different clusters,

our DLRRPD can obtain the ground truth because it can

preserve more intrinsic structure by the projection distance

penalty.
Table 2. Description of the databases

Type Database Samples Dim Classes

UCI

Auto 205 25 6

Cars 392 8 3

Contral 600 60 6

Glass 214 9 6

Isolet 1560 617 2

Handwritten

Dig 1797 64 10

USPS 1000 256 10

MNIST 1000 256 10

Face

Jaffe 213 676 10

MSRA 1799 256 12

Umist 575 645 20

5.2. Experiments on real databases

In this section, eleven real databases are used to evaluate

the performance of all the methods mentioned above. These

databases include five UCI databases: Auto, Cars, Con-

trol, Glass, and Isolet, three handwritten databases: Dig,

USPS, and MNIST, three face databases: Jaffe, MSRA, and

UMIST. The details of these databases are shown in Table

2. For comparison purposes, three typical performance met-

rics are used: accuracy (ACC), normalized mutual informa-

tion (NMI) and F1-score.

The clustering performance is shown in Table 3, and we

can conclude as:

• Overall, DLRRPD achieves very competitive and sta-

ble performance compared to most compared methods.

Taking the image databases, handwritten databases and

Isolet with large dimension feature for example, DL-

RRPD can significantly outperform the other meth-

ods. For the Umist database, the proposed DLRRPD

achieves more than 10% scores of ACC in comparison

with LRRAGR (the second-best method). Moreover,

the proposed method can also obtain higher ACC than

other methods on the remaining databases. This indi-

cates that projection learning can capture the important

features and reduce the redundant information of the

high-dimensional data.

• From the comparison between LatLRR and FLLRR,

we can find that FLLRR performs better in most cases.

Since FLLRR improves LatLRR by using Frobenius

norm instead of nuclear norm, this phenomenon proves

that Frobenius norm is more efficient than nuclear

norm in clustering.

• With respect to NSLLRR, LRRAGR, AWNLRR and

LapNR, our proposed DLRRPD often shows better

performance. This fully demonstrates our DLRRPD

captures the actual structure among the samples using

the projection distance penalty.

• In addition, DLRRPD consistently performs better

than RSEC on almost the database. RSEC just intro-

duce a rank constraint to LRR to make sure the learned

graph contains k connected components. This can

show the effectiveness of using class information. DL-

RRPD uses the class information to jointly guide the

projection learning and graph learning, hence a more

discriminative graph can be obtained leading to better

performance.

In summary, these observations validate the efficacy of

our projection distance penalty, the Laplacian rank con-

straint and Frobenius norm. With the integration of the
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Table 3. Clustering results on real databases

Database Metric Ncut SSC LRR LatLRR DLRR FLLRR NSLLRR AWNLRR LRRAGR RSEC LapNR DLRRPD

Auto

ACC 41.95 40.00 40.98 41.46 41.46 41.46 41.95 40.98 39.02 44.39 41.46 46.83

NMI 19.22 16.30 16.61 17.22 17.27 17.22 18.39 18.57 16.67 17.86 17.82 20.53

F1 32.53 33.32 34.05 34.62 32.47 34.62 33.48 32.46 34.20 35.16 32.36 36.70

Cars

ACC 48.72 61.99 62.76 62.76 62.76 61.99 63.52 66.33 62.76 63.01 57.14 68.37

NMI 22.01 1.33 4.55 4.55 4.55 1.33 6.83 20.97 20.09 22.53 23.99 24.07

F1 48.60 62.58 63.17 63.17 63.17 62.58 63.67 66.04 59.25 58.92 50.54 66.18

Control

ACC 51.50 54.83 48.17 47.33 74.00 40.83 65.00 53.17 56.83 54.33 37.83 76.33

NMI 67.11 69.59 63.37 61.11 61.51 58.09 61.37 61.13 71.94 62.42 67.81 74.78

F1 58.35 64.39 57.25 55.77 62.03 52.58 62.11 53.47 68.10 57.61 54.28 68.85

Glass

ACC 54.21 48.60 53.27 51.87 47.66 51.40 57.48 54.67 55.61 54.67 53.74 58.48

NMI 39.58 35.26 33.13 39.22 25.05 38.28 39.87 43.75 45.90 38.87 38.99 39.91

F1 44.08 42.18 40.22 41.65 43.05 41.16 48.70 49.17 51.05 48.57 42.63 47.09

Isolet

ACC 55.58 54.29 56.00 55.64 57.12 54.10 59.36 58.40 54.49 62.95 58.65 67.37

NMI 0.90 0.60 1.03 0.93 1.48 0.49 2.60 2.07 0.59 4.93 2.28 9.00

F1 50.62 52.16 50.60 50.77 51.11 50.31 51.75 51.53 50.51 53.43 52.24 56.15

Dig

ACC 76.85 14.08 79.13 79.12 60.77 78.95 67.78 79.86 59.32 79.19 76.02 88.81

NMI 71.51 1.38 77.11 74.02 48.05 74.52 71.85 84.27 70.47 76.83 78.93 88.81

F1 67.71 10.15 72.85 71.12 43.35 71.63 63.23 76.90 45.25 72.32 71.70 83.22

MNIST

ACC 56.30 56.70 55.40 48.80 33.80 55.80 56.00 61.60 55.70 55.70 64.00 68.20

NMI 47.72 58.32 50.95 47.21 26.40 50.44 54.74 59.70 59.61 51.91 61.33 66.15

F1 42.36 49.15 43.96 40.61 24.98 43.47 46.66 50.78 45.16 44.54 53.52 59.79

USPS

ACC 49.50 52.50 53.30 50.60 33.70 49.10 54.20 55.00 40.90 53.80 57.20 59.90

NMI 43.78 52.46 49.97 46.77 26.57 46.97 48.76 55.75 50.15 50.66 55.55 55.58

F1 36.96 42.67 43.82 40.76 24.66 39.82 42.35 46.81 38.90 44.33 47.24 47.82

Jaffe

ACC 90.00 96.71 99.53 100 75.12 100 99.53 98.59 98.59 100 98.12 100

NMI 87.57 95.99 99.18 100 71.66 100 99.17 97.52 98.16 100 97.36 100

F1 82.45 93.62 99.05 100 62.63 100 99.03 97.11 97.10 100 96.32 100

MSRA

ACC 52.64 60.92 65.87 63.76 39.02 65.81 69.65 55.98 55.98 69.71 61.42 72.98

NMI 57.95 73.48 73.58 69.10 44.05 72.50 74.99 62.63 71.08 70.73 74.79 73.71

F1 42.75 52.06 55.47 51.65 33.91 55.27 61.49 47.41 46.20 55.06 55.13 63.31

Umist

ACC 47.83 62.43 45.57 39.83 29.39 43.83 55.48 65.39 69.91 45.74 53.04 80.17

NMI 62.62 77.50 61.30 61.90 44.07 59.91 72.50 80.85 82.95 65.26 70.51 89.57

F1 38.25 53.35 35.36 30.91 21.32 34.11 42.12 58.90 59.35 39.76 45.49 72.73

∗The variances of experiments are all 0.

above factors, the proposed method achieves better perfor-

mance than the other methods.

5.3. Image clustering against corruptions

In this section, the robustness property of our DLRRPD

is explored. Here, MSRA and UMIST databases are used

to evaluate the robustness. For computational efficiency, we

select the first 10 samples of each class to construct two

sub-databases. In the experiments, salt & pepper noise with

a fixed percentage is added to the image, which may break

the distance relationship among samples. The clustering re-

sults of noisy data are shown in Fig.3 in which the noise

percentage is set to [0, 10, 20, 30, 40, 50], and some noisy

images are also shown. We can find that: 1) the ACC de-

creases monotonically when the noise level is increased; 2)

our DLRRPD achieves higher accuracies than other meth-

ods under different noise levels. Specifically, DLRRPD de-

grades slower than other methods with the percentage in-

creasing, which means that our DLRRPD method is more

robust than other methods for salt & pepper noise. More-

over, Fig.4 shows some original faces, noised faces and re-

covered faces.2 We can see that DLRR and DLRRPD can

recover images accurately because of projection learning.

In particular, by utilizing class information, DLRRPD ob-

tains the best recovery, proving the robustness of DLRRPD.

5.4. Parameter sensitivity and selection

As shown in model (9), the proposed DLRRPD con-

tains three parameters, i.e., λ1, λ2 and λ3, which bal-

ance the low-rank constraint, error and Laplacian rank con-

straint, respectively. In this section, we test the sensi-

tivity of these three parameters by performing the pro-

posed method with different combinations of three param-

2More results are shown in supplementary materials.
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Figure 3. Clustering performance vs. varying percentage on MSRA (left) and UMIST (right) databases.

Figure 4. Results about recovering the face from noised images. The resulted images of each row are recovered from noised images with

10%, 30% and 50% salt & pepper noise, respectively.

eters, and each parameter is varied in a wide range, i.e.,

[10−5, 10−4, 10−3, ..., 104, 105]. First, we fix λ3 = 10−1

and tune λ1 and λ2, thus the sensitivity of λ2 and λ3 as

Fig 5(a). Then, λ1 and λ2 are fixed, and the influence

of λ3 is showed by performing the proposed method with

different λ3 on the Jaffe database. As shown in Fig 5(b),

we can find that DLRRDP can deliver good results with

λ3 ≤ 100. We can find that DLRRDP can deliver good

results with λ1 ≤ 10−2 and λ2 ≤ 10−2. However, find-

ing a suitable combination of parameters is still an open

problem, and we just confirm that the most suitable pa-

rameters in our method can be found in a small range, i.e.,

[10−5, 10−4, 10−3, 10−2].

Figure 5. Parameter sensitivity analysis of DLRRPD on the Jaffe,

where (a) fix λ3 to tune λ1and λ2; (b) fix λ1 and λ2 to tune λ3

6. Conclusion and future work

A novel self-representation learning model, i.e., Double

Low-Rank Representation with Projection Distance penalty

(DLRRPD), is proposed in this paper. It adopts a pro-

jection distance penalty to exploit more intrinsic structure,

thus making the model preserve both the global and local

structures. And then, a Laplacian rank constraint is em-

ployed to simultaneously guide the projection learning and

graph learning, thus facilitating a more discriminative and

robust graph. Moreover, using Frobenius norm instead of

the widely used nuclear norm, we can obtain a more block-

diagonal graph with lower complexity.

The effectiveness of our DLRRPD has been evaluated on

several benchmark databases for data clustering. The clus-

tering of the data with salt & pepper noise can also show

the robustness of our method. In the future, we will try to

extend this model to semi-supervised and weak supervised

cases. Since labeled samples contain more prior informa-

tion, this model is promising to handle some more complex

real tasks.
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