
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021 501

Zero-Shot Learning to Index on Semantic Trees for
Scalable Image Retrieval

Shichao Kan , Yi Cen, Yigang Cen , Mladenovic Vladimir , Yang Li , Graduate Student Member, IEEE,

and Zhihai He , Fellow, IEEE

Abstract— In this study, we develop a new approach, called
zero-shot learning to index on semantic trees (LTI-ST), for
efficient image indexing and scalable image retrieval. Our method
learns to model the inherent correlation structure between visual
representations using a binary semantic tree from training images
which can be effectively transferred to new test images from
unknown classes. Based on predicted correlation structure, we
construct an efficient indexing scheme for the whole test image
set. Unlike existing image index methods, our proposed LTI-ST
method has the following two unique characteristics. First, it
does not need to analyze the test images in the query database to
construct the index structure. Instead, it is directly predicted by a
network learnt from the training set. This zero-shot capability is
critical for flexible, distributed, and scalable implementation and
deployment of the image indexing and retrieval services at large
scales. Second, unlike the existing distance-based index methods,
our index structure is learnt using the LTI-ST deep neural
network with binary encoding and decoding on a hierarchical
semantic tree. Our extensive experimental results on benchmark
datasets and ablation studies demonstrate that the proposed LTI-
ST method outperforms existing index methods by a large margin
while providing the above new capabilities which are highly
desirable in practice.

Index Terms— Zero-shot, learning to index, semantic tree,
scalable image retrieval, approximated nearest neighbor search.

I. INTRODUCTION

DURING the past decades, we have witnessed the explo-
sive growth of images and videos on the web, social

Manuscript received March 20, 2020; revised July 26, 2020 and
September 11, 2020; accepted October 17, 2020. Date of publication
November 16, 2020; date of current version November 24, 2020. This
work was supported in part by the National Key R&D Program of China
under Grant 2019YFB2204200; in part by the National Natural Science
Foundation of China under Grant 61872034, Grant 62011530042, and Grant
62062021; in part by the Beijing Municipal Natural Science Foundation
under Grant 4202055; in part by the Natural Science Foundation of Guizhou
Province under Grant [2019]1064; in part by the Science and Technology
Program of Guangzhou under Grant 201804010271; and in part by the
China Scholarship Council under Award 201907090007. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Husrev T. Sencar. (Corresponding authors: Yigang Cen; Zhihai He.)

Shichao Kan and Yigang Cen are with the Institute of Information Science,
Beijing Jiaotong University, Beijing 100044, China, and also with the Beijing
Key Laboratory of Advanced Information Science and Network Technology,
Beijing 100044, China (e-mail: 16112062@bjtu.edu.cn; ygcen@bjtu.edu.cn).

Yi Cen is with the School of Information Engineering, Minzu University
of China, Beijing 100081, China (e-mail: tsinge@muc.edu.cn).

Mladenovic Vladimir is with the Faculty of Technical Sci-
ences, University of Kragujevac, 34000 Čačak, Serbia (e-mail:
vladimir.mladenovic@ftn.kg.ac.rs).

Yang Li and Zhihai He are with the Department of Electrical Engineering
and Computer Science, University of Missouri, Columbia, MO 65211 USA
(e-mail: yltb5@mail.missouri.edu; hezhi@missouri.edu).

Code project: https://github.com/kanshichao/LTI-ST
Digital Object Identifier 10.1109/TIP.2020.3036779

Fig. 1. Zero-shot learning to index on semantic trees (LTI-ST).

networking platforms, surveillance networks, cloud servers,
and mobile devices. It has become an urgent task to develop
highly efficient image indexing and scalable retrieval methods.
Images are encoded into features and nearest neighbor (NN)
are then used to find the retrieval result. NN search in
the high-dimensional feature space on large-scale datasets is
very challenging. Exhaustive NN search is computationally
prohibitive. How to develop efficient index schemes to achieve
fast and scalable NN search has recently emerged as an
important research topic. A large body of approximate NN
search algorithms, including binary embedding [1], hashing
codes [2], image clustering [3], and codebook-based quantiza-
tion [4]–[7], have been developed to address issues of search
accuracy, computational complexity, and memory cost. Based
on these algorithms, one can construct an index structure to
accelerate NN search. An inverted index then stores the list
of images that lie in the proximity of each codeword, where
we expect a set of similar images are indexed into the same
group [4], [7]. During query, only clusters of images indexed
in high-ranking clusters are examined for detailed search.
Those low-ranking clusters of images are considered irrelevant
to the query and will be excluded from the detailed search
process.

As pointed out in [8], most of existing index methods for
approximate NN search [4], [7], [9] are based on distance
between the original query sample and quantized codewords.
This type of quantization process and distance-based index
schemes will introduce information loss, especially for tree-
based index methods [10], [11]. Although better quantization
methods [6], [12], [13] can be used to alleviate this problem
to some extent, the indexing and search complexity will
increase dramatically. This information loss will result in
significant performance degradation in image indexing and
search. Recently, Chiu et al. [8] introduced a probability-based

1057-7149 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0097-6196
https://orcid.org/0000-0001-6255-9422
https://orcid.org/0000-0001-8530-2312
https://orcid.org/0000-0002-8372-1481
https://orcid.org/0000-0003-2255-4293

502 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

index scheme, called Prob-RAW, to address this issue and
achieved significantly improved feature indexing and retrieval
performance. This Prob-RAW method aims to learn neighbor-
hood relationships embedded in the index space and nearest
neighbor probabilities based on the query feedback. The
clusters are ranked according to the NN probabilities instead
of the Euclidean distances between features.

The Prob-RAW method in [8] represents one of the earli-
est efforts on developing probability-based or learning-based
index schemes. However, we recognize that there are three
important issues that have not been addressed. (1) Depending
on the testing dataset. Both the distance-based index methods
and the Prob-RAW method require the use of test images
from the test database to construct the codebook or learn the
index structure. This dependency has several major drawbacks.
For example, when the test image database is updated with
new images, these indexing schemes need to re-analyze the
database to update the index structure. Can we develop an
efficient index scheme which is learnt from a training set
of images and directly applied to the test images? We refer
to this new capability as zero-shot learning to index. This
zero-shot capability is highly desirable in practice because
it does not need to be updated with new images. It can be
implemented in a distributed fashion and flexibly deployed
at new service nodes. It requires the learning algorithm to
capture the underlying structure of visual representation of
images which can be effectively transferred from the training
images to new test images. (2) Constrained by the extracted
image features. Both the distance-based index methods and
the Prob-RAW method learn the feature representation model
and index model separately. Is it possible to learn them in an
end-to-end manner? This end-to-end learning capability plays
a crucial role in training a more flexible, more convenient, and
better performance model. (3) Non-scalable. The Prob-RAW
method learns to index the features onto a set of clusters. How
to extend this learning to index scheme onto hierarchical trees
to provide scalable image indexing? This tree-based indexing
scheme is critical for efficient NN search when the number of
clusters becomes large.

To address these important issues, in this work, we propose
to develop a new method called zero-shot learning to index on
semantic trees (LTI-ST) for highly efficient image indexing
and scalable image retrieval. Our proposed LTI-ST method
is motivated by the following observation: the fundamental
objective of image indexing is to assign the same index to
images of the same class. In other words, images which have
strong semantic correlation with each other should be indexed
into the same group. Therefore, the key task of image indexing
is to characterize the correlation structure of images. As we
know, images have a hierarchical correlation structure in the
high-dimensional feature space, with the top layers show-
ing significant difference between images and bottom layers
showing subtle or fine-grained difference between neighboring
images. Therefore, we propose to encode this correlation
structure using a hierarchical tree, learn a network to map
the input image into this code, predict this code for new
test images using the network, and construct the correlation
structure of test images in the feature space.

Fig. 2. Hierarchical correlation structure between images.

Specifically, as illustrated in Fig. 1, on the training set,
with embedded learnt features, we construct a hierarchical
tree of image clusters and encode each training image with
a binary code mapped on this tree. This binary code will be
used to generate labels for the training image. The image-label
pairs will be used to train an LTI-ST deep neural network
model. Once successfully trained, this LTI-ST network will
be used to predict labels for each test image, which will be
then decoded back onto the tree structure and construct the
hierarchical clusters on test images and their indices. Our
experimental results on benchmark datasets demonstrate that
our new approach outperforms existing index methods while
providing the zero-shot and scalable capabilities. Fig. 2 shows
one example to demonstrate this idea. The left figure shows
the hierarchical clustering of the training images and each
image is encoded by its path information on this tree. The right
figure shows the correlation structure of the new test images
predicted by our LTI-ST network learnt from the training data.

The major contributions of this paper can be summarized
as follows:

• We propose a learning-based image index scheme with
embedded features based on binary encoding and decod-
ing on semantic trees. With our framework, feature
embedding and indexing model can be learnt in an end-to-
end manner, which is different from other feature-based
image index methods.

• Unlike existing index methods, our proposed LTI-ST
index scheme is zero-shot and highly scalable, which
does not require the analysis of test images in the query
database, allowing fast, flexible, distributed, and scalable
implementation and deployment of image indexing and
retrieval services at large scales. Based on our method,
there is no need for distance computation to obtain the
index since it is directly predicted online by our deep
neural network, and the predicted index value can be
stored in the memory with the embedded features.

• Our extensive experimental results on benchmark datasets
and ablation studies demonstrate that the proposed
LTI-ST method outperforms existing index methods by a
large margin while providing the above new capabilities
which are highly desirable in practice.

The rest of this paper is organized as follows. Section II
reviews the related work on image indexing. The proposed
LTI-ST method is presented in Section III. Experimental
results, performance comparison with state-of-the-art methods,
and detailed ablation studies of our algorithm are provided in
Section IV. Section V concludes the paper.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

KAN et al.: ZERO-SHOT LEARNING TO INDEX ON SEMANTIC TREES FOR SCALABLE IMAGE RETRIEVAL 503

II. RELATED WORK

In the following, we review existing image indexing
schemes related to our study, including codebook-based, tree-
based, graph-based, and learning-based indexing schemes, and
zero-shot learning methods.

A. Codebook-Based Indexing Methods

Vector quantization is extensively used in codebook-based
indexing methods, including the IVF (inverted file system) [7],
[14], IVFADC (inverted file system with asymmetric distance
computation) [9] and IMI (inverted multi index) [4], [15]
methods developed in the literature. With codebook learning,
they produce a set of representative centroid codewords in the
high-dimensional feature space. Each feature to be indexed
is quantized to the nearest codeword. These methods usually
combine index and database compression.

Product quantization (PQ) [16] is one of the state-of-the-art
methods for database compression. PQ is implemented by par-
titioning the feature vector of an image into several segments
and encoding each segment with the corresponding codebook.
Combining IVF and PQ, the IVFADC method [9] has achieved
fast search in large-scale databases with billions of images.
Babenko and Lempitsky proposed the Multi-D-ADC (multi-
displacement-asymmetric distance computation) method [4]
by combining IMI and PQ for fast retrieval in large-scale high-
dimensional database. The performance of indexing in the
Multi-D-ADC scheme has been further improved using global
data rotation that minimizes correlations between subspaces
[17]. Another major improvement has been achieved in [18]
which introduces the Multi-LOPQ (multi-locally optimized
product quantization) system that uses local PQ codebooks
for displacement compression based on the IMI structure.

Embedding is another popular approach for database com-
pression. Binary embedding [19]–[22] and feature embedding
[23]–[26] are two major embedding methods. In general,
the most compact data representation is provided by binary
embedding. To realize binary embedding, the original data is
first encoded into binary codes by a set of hash functions
or learning methods, then the hamming distance between
two binary codes can be calculated efficiently with hardware-
supported machine instructions. Methods in [27]–[29] combine
binary embedding and index schemes to achieve low storage
and fast retrieval. Although, they can save time and memory,
the retrieval performance is significantly degraded due to
information loss.

B. Tree-Based Indexing Methods

Tree-based indexing is widely used for scalable and fast
deployment at large scales [10], [11]. The kd-tree [30] is one
of the well-known approximate NN search algorithms, which
is constructed by splitting data on the dimension with the
highest variance. Later, Arya et al. [31] proposed an “error
bound” approximate NN search method by controlling the
error rate based on a variation of the kd-tree. Beis et al. [32]
proposed a “time bound” approximate NN search method by
limiting the time spent on the search. In this way, the kd-tree

search is stopped early after examining a fixed number of leaf
nodes. The time-constrained approximation method has been
found to produce better performance than the error-constrained
approximate NN search. Randomized kd-tree is proposed in
[11] to speed up approximate NN search.

Another class of tree index algorithms decompose the space
using various clustering methods. These index algorithms
include the hierarchical k-means tree [33], the anchors hierar-
chy [34], the vptree [35], the cover tree [10] and the spill-tree
[36]. Nister and Stewenius [37] proposed the vocabulary tree,
which is searched by accessing a single leaf of a hierarchical
k-means tree. Leibe et al. [38] proposed a ball-tree data
structure using a mixed partitional-agglomerative clustering
algorithm. Schindler et al. [39] proposed a new method to
search the hierarchical k-means tree.

Both the above tree-based dimension-decomposition meth-
ods and space-decomposition methods have the following two
major drawbacks. (1) They need a considerable amount of
memory to store the huge index structure. (2) They will reduce
the accuracy of the query results, especially with deep trees.
To address these two issues, Muja and Lowe [13] developed
the priority search k-means tree algorithm for effective match-
ing in high-dimensional spaces. Houle and Nett [12] proposed
the rank cover tree, which uses the ordinal ranks of the
query distance to prune data points. Liu et al. [6] introduced
an aggregating tree using residual vector quantization (RVQ)
encoding and beam search. In this paper, we propose to
decompose the feature space on semantic trees and time-
constrained approximation criterion is used during the query
stage. Our indexing algorithm is learning-based and the accu-
racy is significantly improved when compared to the above
distance-based indexing algorithms, and there is no need to
store the codebook in the memory.

C. Graph-Based Indexing Methods

Graph-based indexing schemes aim to build greedy rooting
navigation on a group of datasets to realize fast NN retrieval.
Generally, the greedy rooting is built on approximate k-nearest
neighbor (k-NN) graphs [40]–[46], called proximity graph.
For a given proximity graph, the search starts at an one
point and iteratively traverses the graph. At each step of the
traversal, the algorithm examines the distances from a query
to the neighbors of a current base node, and then selects
one of the neighbors as the next base node that minimizes
the distance. Examples of proximity graph algorithms include
the navigable small world (NSW) [43], the hierarchical nav-
igable small world (HNSW) [44], the navigating spreading-
out graph (NSG) [45] and the satellite system graph (SSG)
[46] algorithms. Our proposed method is complementary to
the proximity graph. We aim to group large-scale dataset and
online data into semantic tree groups, and the graph-based
indexing scheme can be applied to each group of the semantic
tree to reduce the number of distance calculations for online
retrieval.

D. Learning-Based Indexing Methods

The above codebook-based and tree-based indexing meth-
ods are all based on distance. They suffer from information

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

loss during codebook matching or quantization. Recently,
Chiu et al. [8] introduced one of the first indexing scheme,
called Prob-RAW, based on learning. Unlike previous distance-
based methods, this new index method aims to learn the
neighborhood relationships embedded in the index space and
nearest neighbor probabilities based on the query feedback.
The clusters are ranked according to the NN probabilities
instead of the Euclidean distances of features. Compared to
this Prob-RAW method, our LTI-ST index method has the
following unique and important characteristics: (1) it is zero-
shot thus does not need to use images from the query database.
The Prob-RAW method needs to use queries in the database
to learn the NN probability nonlinear mapping. (2) Based
on our method, models of feature embedding and index can
be learnt simultaneously. The Prob-RAW method needs to
extract features first and then learn the index model. (3) Our
model is learnt on the semantic trees with binary encoding and
decoding, which is scalable for large-scale image retrieval.

E. Zero-Shot Learning

The general purpose of zero-shot learning (ZSL) [47] is to
learn a model to recognize the test images from unseen classes.
In other words, the train classes and test classes are totally
different. ZSL has been widely studied in image classifica-
tion [48]–[50], video classification [51], hashing [52], image
retrieval [53], [54], etc. Usually, extra auxiliary supervision
signals of unseen classes, such as semantic word embed-
dings of seen and unseen class names and explicit attribute
information, are used. This work represents one of the first
efforts to study zero-shot image indexing, where the indexing
algorithm is learnt from the training classes with known labels
and applied to query images from unseen classes. This zero-
shot capability allows us to develop an index scheme which
does not need to access the query database, which is however
required in existing indexing methods. Similar with zero-shot
learning on retrieval task that aims to learn a transferable
feature embedding model based on instances belong to the
training seen classes [53], we learn a transferable index model
from the training classes.

III. THE PROPOSED LTI-ST METHOD

In this section, we present our proposed LTI-ST method.

A. Method Overview

Fig. 3 provides an overview of the proposed LTI-ST method.
We first use a pre-trained deep neural network, called encoder
network, to encode the input image and extract its high-
dimensional feature. The feature vector is then embedded into
a compact feature space using a learnt feature embedding
network to reduce its feature dimension and increase its
discriminative power. Based on the embedded features of
training images, we perform hierarchical k-means clustering
of these features to construct a binary tree of codewords.
Based on this binary codeword tree, we encode each class
of training images with the same class label by identifying
the best matching codeword at each layer of the tree for each

Fig. 3. The proposed learning to index on semantic tree (LTI-ST) framework
(training).

image in the class. We then assemble histogram statistics of
the best matching codewords for the whole class. This step of
mapping the class of images with the same semantic label is
referred to as semantic tree encoding.

To accurately characterize the correlation structures between
images in the high-dimensional feature space, we study three
different labeling schemes to convert this tree-based encoding
into a label vector for the whole class of images: hard,
soft, and ranked labeling schemes. From our experiments,
we observe that these three labeling schemes are able to
capture different aspects of the correlation structure between
images. Based on these three labeling schemes, we will learn
three different networks, hard prediction network �H , soft
prediction network �S , and ranked prediction network �R in
Fig. 3, to predict these three types of labels. The corresponding
loss functions are denoted by L H , LS , and L R , respectively.
In our proposed method, these three networks are jointly
trained together in an end-to-end fashion. Specifically, we will
concatenate the feature generated by these three networks (e.g.,
its fc-1 layer), denoted by FC1(�H), FC1(�S), and FC1(�R),
along with the embedded feature FE that computed by the
feature embedding network, to form a cascading feature for
index prediction using the index prediction network �P . These
three labels prediction networks, �H , �S , �R , and the index
prediction network �P will be jointly trained, which will be
explained in more details in the following sections.

B. Semantic Tree Encoding and Sample Labeling

The semantic tree encoding and labeling aim to generate
the semantic tree labels for each class of training images.
One important property of this semantic tree encoding is that
images from semantically similar classes should have small

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

KAN et al.: ZERO-SHOT LEARNING TO INDEX ON SEMANTIC TREES FOR SCALABLE IMAGE RETRIEVAL 505

distance values between their codes. As illustrated in Fig. 4,
we use GoogLeNet [55] or ResNet-50 [56] model that pre-
trained on ImageNet and fine-tuned on our training set to
encode each image into a feature vector. This GoogLeNet or
ResNet-50 feature will be further embedded into a compact
semantic feature so that image features of the same class are
made closer to each other [25]. Based on this semantic feature,
we perform hierarchical k-means clustering on the training
image features to construct a binary codeword tree T with
each codeword being the cluster center. Suppose that the tree
T has NL + 1 layers. At layer l, 0 ≤ l ≤ NL , we have a set
of 2l codewords:

�l = [cl
1, cl

2, · · · , cl
2l]. (1)

Once this semantic tree is constructed, we are ready to map
each class of training images onto this tree using the following
semantic tree encoding scheme. Specifically, at layer l, we find
the best matching codeword cl

k∗ from �l∗ for each image x
with feature embedding e(x):

cl
k∗ = arg min

cl
k∈�l∗

||e(x) − cl
k ||2. (2)

Here, �l∗ is a subset of �l whose parent nodes are the best
matching codeword found in the previous layer. In this way, we
can guarantee that the best matching codewords of all layers
form a valid path on the tree [6]. We then define the binary
vector Bl(x) with only 1 at position k∗ and zeros at other
locations at the l-th layer. Let Gn be the n-th class of training
images, 1 ≤ n ≤ N . The semantic tree encoding vector for
the whole class Gn is then defined as

Ql
n =

∑
x∈Gn

Bl(x), (3)

which is a histogram vector summarizing how many images
from the class Gn are matched to each codeword at layer
l, as illustrated by the histogram in Fig. 4. To minimize
the impact of different class sizes, we perform the following
normalization over all training classes:

Ql
n = Ql

n∑N
i=1 Ql

i

, (4)

Once the semantic tree encoding vector for each class of
training images is obtained, we map it into three label vectors
using the following three labels generation schemes. These
three labeling schemes aim to capture different correlation
structures between image samples. The hard label vector for
x at layer l, denoted by hl(x), is a binary vector obtained by
finding the maximum frequency number in Ql

n and setting it to
be 1 and the rest numbers to be zeros. The soft label vector for
image x at layer l, denoted by sl (x), is obtained by normalizing
the histogram vector Ql

n into a probability vector. Unlike the
hard and soft labels, the ranked label vector is generated by
an image retrieval method. For each image x , we find the
top K best matches from the whole training set, denoted by
�(x) = {x �

1, x �
2, · · · , x �

K }. We treat this set of retrieved images
as one new class and follow Eq. (3) to compute its semantic

Fig. 4. Three different labeling schemes.

tree encoding vector

Rl
x =

K∑
k=1

Bl (x �
k) · w(k), (5)

w(k) is a weighting function. For example, in our experiments,
we set w(1) to be significantly larger than the remaining
weights. Similar to Eq.(4), semantic tree normalization over
all the training images is performed as follows:

Rl
x = Rl

x∑M
i=1 Rl

i

, (6)

where M is the number of training images. From our experi-
mental results, we will see that these three labeling schemes
capture different types of neighborhood relationship between
the training images. Fusion of information or features gener-
ated by networks trained with these different labeling schemes
will result in significantly improved indexing performance.

Once the labels for image x at tree layer l is obtained,
the labels of all layers in the tree are then concatenated
together to form the final hard, soft, and ranked labels
for image x : h(x) = [h0(x), h1(x), · · · , hNL (x)],
s(x) = [s0(x), s1(x), · · · , sNL (x)], and r(x) =
[r0(x), r1(x), · · · , rNL (x)]. It should be noted that, for
the soft and hard labels, the whole class of training images
have the same label vector. But, for the ranked labels, images
of the same class may have slightly different label vectors.
In our experiments, we observed that the ranked labels often
yielding better performance than the other two labeling
schemes for zero-shot learning to index.

C. Learning the LTI-ST Networks

As discussed in previous sections, our proposed method
learns the feature embedding network and index network
simultaneously. In this section, we first explain how to learn
the feature embedding network, and then we explain how to
learn these three labeling prediction networks and the index
prediction network.

1) Learning the Feature Embedding Network: There are
a number of methods developed in the literature for effec-
tive learning of feature embedding [23]–[26]. They map

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

506 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE I

THE DETAILED STRUCTURE OF ALL THE NETWORKS IN LTI-ST WITH THE ENCODER NETWORK OF GOOGLENET (G) OR RESNET-50 (R)

high dimensional feature to compact low dimensional feature
embedding, as well as learning a distance or similarity metric.
Following previous works of feature embedding, in this work,
we adopt the state-of-the-art multi-similarity loss (MSL) [25]
as the L E loss to learn the feature embedding network with
GoogLeNet and ResNet-50 encoders.

Specifically, given a mini-batch of M images {xi , yi }M
i=1,

in which xi is the i -th image, yi is the corresponding class
label. The output of the embedding network are image fea-
tures, denoted as e(xi). Suppose that the features and their
corresponding labels in a mini-batch are {e(xk), yk}M

k=1. Then,
the similarity matrix between features of the current mini-
batch can be computed, denoted as S = {sik}, 1 ≤ i ≤ M, 1 ≤
k ≤ M . Here, sik is the cosine similarity between two features.
Using S, we determine the set of positive pairs P and the set
of hard negative pairs N based on their similarity scores as
follows:

P = {(i, k)|yi = yk}
N = {(i, k)|yi �= yk and sik > σ }, (7)

where σ is a similarity threshold for hard negative pairs, which
is set as 0.3 in our experiments. Once the sets of positive and
hard negative pairs P and N are identified, we define the loss
for each sample xi in the mini-batch as follows

Li
E = 1

λP
log[1 +

∑
(i,k)∈P

(e−λP (sik−δ))]

+ 1

λN
log[1 +

∑
(i,k)∈N

(eλN (sik−δ))], (8)

where δ is a margin threshold. According to [25], δ is set to
0.5, λP is set to 2 for positive pairs, and λN is set to 40 for
hard negative pairs. Then, the overall loss of the current mini-
batch is given by

LE = 1

M

M∑
i=1

Li
E . (9)

For more details, please refer to [25] and our released code.
2) Learning the Labels Prediction Networks: These three

labels generation network share the same network structure
and training process. In the following, we take the hard labels
generation network as an example to explain the training of
these three labels generation networks.

Given a training set with M images {xi , yi , ti }M
i=1, in which

xi is the i -th image, yi is the corresponding class label, and
ti is the hard semantic tree labels h(xi). The hard labels
prediction network �H is a multiple layer perception network.
The input to the network is the feature embedding e(xi) of
image xi . Let vi = �H (xi) be the network output. The loss

function for this network, called hard loss, is given by the
following cross entropy

L H = �[�H (xi), h(xi)], (10)

where �[·, ·] represents the cross entropy. Similarly, we can
compute the losses of LS and L R for the soft prediction
network and ranked prediction network.

3) Learning the Index Prediction Network: For the index
prediction network, its output is the semantic tree labels
generated from the encoding process described in the previous
section. We can choose the hard, soft, or the ranked labels
as the ground truth labels. The input to the index prediction
network is the concatenation of four feature vectors: FC1(�H)
from the hard prediction network, FC1(�S) from the soft
prediction network, FC1(�R) from the ranked prediction
network, and FE = e(x) from the feature embedding network
for image x . We use the output of the first fully connected
layer f c-1 of the labels generation network as the feature. In
our design, the index prediction network aggregates the fea-
tures and information obtained from three drastically different
learning paths to enhance its prediction power. According to
our experiments, it is much more accurate and robust than each
individual labels prediction network and is able to obtain more
accurate and consistent indexing results within each class. This
is very important for zero-shot learning to index cross different
databases of images.

To train the index prediction network �P , we use the labels
loss L P which is the cross entropy between the network
prediction �P(xi) and the semantic tree labels. The semantic
tree labels can be set as one of the hard, soft, and ranked
labels. To further enhance its semantic prediction power such
that images of the same class have similar prediction outputs,
we also introduce the following class center loss

LC =
N∑

i=1

||�P(xi) − �c
P(xi)||2, (11)

where �c
P (xi) is the average of network outputs for all images

xi from the same class. The three labels generation networks
and the index prediction network are jointly trained.

4) Overall Loss and Network Structure: The overall loss
function is formulated as:

L = L E + L H + LS + L R + L P + λLC , (12)

where λ is the weight of LC . We can see that the loss functions
for three labels prediction networks, L H , LS , and L R are
used to provide intermediate regulation between the labels
prediction networks and index prediction network. They are
able to improve the performance of the whole end-to-end
network learning to achieve the desired outcome.

The detailed structures of all the networks are summarized
in Table I, where d is the dimension of feature embedding,

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

KAN et al.: ZERO-SHOT LEARNING TO INDEX ON SEMANTIC TREES FOR SCALABLE IMAGE RETRIEVAL 507

Fig. 5. Semantic tree decoding and indexing.

G represents GoogLeNet, and R represents ResNet-50. For the
hard prediction network, soft prediction network, and ranked
prediction network, there are one ReLU [57] activation layer
and one dropout [58] layer (the drop ratio is 0.1) after f c-1
and f c-2 layers. For the index prediction network, there are
one ReLU activation layer and one dropout layer (the drop
ratio is 0.1) after the f c-1 layer.

D. Semantic Tree Decoding and Image Retrieval

For scalable image retrieval with approximate NN search,
we first need to group the test images in the test database
into clusters organized by the index structure. In our proposed
zero-shot LTI-ST method, we learn the LTI-ST network to
directly predict the index of the input image, as discussed in
the previous sections. This predicted outputs or labels have
similar structure with the semantic tree encoding scheme. Our
next step is to perform semantic tree decoding to map this
predicted labels back onto a tree structure. This semantic tree
decoding will achieve two important objectives. (1) The first
objective is to construct the index structure of the test database
and prepare it for image retrieval. Once the LTI-ST network is
successfully learnt, it can be used to predict the tree-structured
index for every image in the test database. With this index,
all test images can be then organized and indexed. If new
images need to be added into the database, we just run the
LTI-ST network on these new images and add them to the
corresponding clusters according to their indices. All existing
images will not be touched and there is no need to update the
whole database, which is however required in many existing
methods [4], [8], [13]. (2) The second objective is to recover
the tree index of the query image for hierarchical image
retrieval. Given a query image, we first compute its index and
identify the group or a subset of groups to be searched in
the database, instead of searching the whole database whose
complexity is prohibitively high [8].

As illustrated in Fig. 5, the semantic tree decoding recon-
structs the index structure of the input image in an iterative
manner on the binary tree. Suppose that our task is to find
the top r clusters to be searched in the query database. As we
can see from Section III B, the predicted labels h�(x), s�(x),
or r�(x) have an embedded tree structure with the labels from
all tree layers being concatenated together. Let

z(x) = z0 � z1 � · · · � zNL (13)

be the predicted labels with the concatenated structure of
tree layers for image x , where zl = [p1, p2, · · · , p2l] is the

Algorithm 1 Semantic Tree Decoding Algorithm

Algorithm 2 Scalable Image Retrieval Algorithm

predicted label vector at layer l. For 1 ≤ j ≤ 2l , p j is the
probability of image x belongs to the j -th node at layer l. Let

Kl = arg max
p j∈zl

{p j , r} (14)

be the corresponding locations of top r values in vector zl , if
the number of values in zl less than r , Kl = [I1, I2, · · · , I2l],
{I1, I2, · · · , I2l } represents indices on zl . The indices in Kl

are the selected subgroup of indices and tree nodes at layer l
for image retrieval. These |Kl | nodes have 2 × |Kl | children
in the next layer, where |Kl | represents the length of Kl , and
|Kl | ≤ r . Within these children locations, we find the top r
values in vector zl+1, as follows

Kl+1 = arg max
j∈{2×Kl−1,2×Kl },p j ∈zl+1

{p j , r}, (15)

where {2 × Kl − 1, 2 × Kl} are children indices on zl+1
that deduced based on the found indices Kl on zl . The top-r
semantic tree decoding operates in an iterative manner for all
the tree layers based on Eq. (15), and this process is repeated
until the last layer NL is reached and the corresponding
r nodes in the last layer indexed by {I1, I2, · · · , Ir } are
the selected groups for image retrieval. The semantic tree
decoding algorithm is summarized in Algorithm 1.

It should be noted that the semantic tree decoding algorithm
is implemented for the test images by setting r = 1, and for
the query image xq by setting r ≥ 1. The retrieval algorithm
is summarized in Algorithm 2.

In Algorithm 2, the Euclidean distance is used to compute
the similarity in the third step, where d = [d1, d2, · · · , dr×nq]

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

508 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

and each d j represents one Euclidean distance between e(xq)
and one candidate retrieval result. These candidate distances
are used to the last step to obtain the query results, where
the indices of nq smallest distances based on d is defined as
follows

K = arg min
dj ∈d

{d j , nq}. (16)

Moreover, existing feature encoding methods, such as PQ [16],
hashing [1], and in-group approximate NN retrieval methods
(e.g., HNSW [44]), can be used at the third step to achieve fast
image retrieval. In our experiments, in order to provide a fair
comparison with the inverted index methods, exhaustive search
with feature embedding is used for the in-group retrieval.
Furthermore, we also present experimental results with the
HNSW method to decrease the number of visited examples in
each group.

E. Complexity and Storage Analysis

The computational complexity of Algorithm 2 is mainly
from the first and third steps. At the first step, the com-
plexity of feature embedding computation is determined by
the convolutional neural network. Suppose that the dimension
of feature embedding is d, the number of nodes in the first
layer of hard prediction network, soft prediction network, and
ranked prediction network are τh , τs and τr , respectively.
The index prediction network has κ f c layers and each
layer has τp nodes. Then, the complexity in this step is
approximately O(d × (τh + τs + τr) + (τh + τs + τr + d) ×
τp + (κ − 2) × τ 2

p + τp × (2(NL +1) − 1)). At the second
step, the complexity for codebook and tree generation are
O(2Nl) and O(2 × r × (Nl − log(r))), respectively. Because
there are only comparison operations, this step has very low
complexity. At the third step, when exhaustive retrieval is
used for in-group retrieval, the computational complexity is
approximately O(uI1 + uI2 + · · · + uIr)), where uIr is the
number of examples in group Ir . When the HNSW method
is used for in-group retrieval, the complexity is approximately
O(log(uI1)+ log(uI2)+· · ·+ log(uIr)). At the fourth step, we
only need to sort r × nq distance values, which has very low
complexity.

The memory required by Algorithm 2 is mainly for the
feature embedding. If the dimension of feature embedding is
d and the data type is single float, then we need 4d bytes
memory to store a feature embedding and 4 bytes memory
to store an index value. The total memory consumption for
one image is 4 × (d + 1) bytes. Because feature embedding
is learnt based on the training dataset and d is flexible, thus
we can control memory consumption by changing the value of
d. In our work, 1GB memory can store 2(28−log(d+1)) feature
embeddings, e.g., if d = 512, a computer with 1GB memory
can store more than half million feature embedding results.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results on
benchmark datasets, performance comparisons with state-of-
the-art methods, and ablation studies of our algorithm.

A. Datasets and Evaluation Metrics

To evaluate the effectiveness of the proposed frame-
work, we conduct experiments on the benchmark datasets:
Stanford Online Products dataset [59] and the ImageNet
ILSVRC 2012 dataset [60].

The Stanford Online Products (SOP) dataset contains
22,634 categories with 120,053 images. Following the public
partition rule, we split the first 11,318 classes with 59,551
images for training, and the remaining 11,316 classes with
60,502 images for retrieval test. In the test set, each image is
also used as the query image. The ImageNet ILSVRC 2012
dataset contains 1,000 classes with 1,281,167 training images
and 50,000 validation images. In this work, the first 500 classes
are used for training, and the remaining 500 classes are used
for test.

We follow the standard protocol [3] to evaluate the per-
formance of our algorithm using the following image index
performance metrics: (1) the BCubed precision, and (2) F-
measure [61]. Following other indexing methods [4], [8], we
also adopt the visited list length v.s. Recall@1, where the
number of returned query results nq in Algorithm 2 is set
to be 1, to evaluate the retrieval performance.

For the BCubed precision and BCubed F-measure, let us
denote (yi , y j) and (gi , g j) as the ground truth labels and
group labels of image pair (xi , x j), respectively, we first define
the pairwise correctness as,

δ(i, j) =
{

1 if yi = y j and gi = g j

0 otherwise.
(17)

Then, the BCubed Precision and BCubed Recall are defined
as:

α = Ei {E j :gi=g j [δ(i, j)]}, (18)

β = Ei {E j :yi=y j [δ(i, j)]}, (19)

where Ei {·} and E j [·] represent the arithmetic average over all
pairs (xi , x j). The BCubed F-measure is defined as: γ = 2α·β

α+β .
The Recall@1 is computed as follows:

Recall@1 = Ei {ξi }, (20)

where ξi is the i -th query score. If the category label of
the first example after sorting in ascending order (based on
distance) is matched with the category label of the i -th query,
ξi = 1, otherwise, ξi = 0. The performance metric of
grouping measures the accuracy of whole image class, while
the performance metric of visited list length v.s. Recall@1
measures the accuracy of first ranked example after retrieval.
They are often jointly used for performance evaluations of
indexing methods.

As discussed in Section I, our proposed LTI-ST algorithm
is zero-shot. It is able to learn the indexing scheme on the
training set and can be applied directly to the test database
of images. Existing methods need to analyze the test database
to learn and construct the index structure. During performance
evaluations, there are two different learning and test scenarios:
(1) Train → Test where the index structure is learnt on the
training set and evaluated on the test set, and (2) Test → Test

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

KAN et al.: ZERO-SHOT LEARNING TO INDEX ON SEMANTIC TREES FOR SCALABLE IMAGE RETRIEVAL 509

Fig. 6. The comparison with state-of-the-art codebook-based (NL = 1) and tree-based (NL = 8) indexing methods on the SOP dataset (the group size is
256). Figs. 6a, 6b, 6c and 6d are results based on the exhaustive in-group retrieval method. Figs. 6e, 6f, 6g and 6h are results based on the HNSW in-group
retrieval method.

where the index structure is learnt and also evaluated on the
test set. We will compare our algorithm with state-of-the-art
methods on both scenarios.

B. Implementation Details

Results shown in this paper are based on the Caffe [62] and
faiss [63] frameworks. The GoogLeNet [55] are ResNet-50
[56] are used as the encoder network in our LTI-ST. To gen-
erate compact feature embedding and accelerating training,
the encoder network is first fine-tuned on the training set
using the multi-similarity loss [25]. The number of iterations
at the fine-tuning stage is 30,000 for feature embedding.
As shown in Table I, the hard prediction network, soft predic-
tion network, and ranked prediction network are three-layer
perception (MLP) networks. The index prediction network is
also an MLP and its number of layers is 2. During training,
the batch size is set as 1000, the initial global learning rate is
0.001. If not specified, d is set as 512. The GPU used in this
study is GTX 1080 with 11G memory. The group accuracy on
the SOP dataset is computed based on the F-measure. Because
the number of images in each class is larger than the number
of classes in ImageNet, and the recall groups for each class
approximate the number of groups at the grouping stage, thus
the group accuracy on the ImageNet is computed based on the
BCubed precision in Table III.

C. Comparisons With the State-of-the-Art Methods

For group accuracy evaluations, we compare our algorithm
with (1) the distance-based index method IVF and (2) the state-
of-the-art learning to index method Prob-RAW, Prob-QCS, and
Prob-RAW+QCS [8] methods. For the retrieval performance
evaluations, we compare our algorithm with (1) the codebook-
based (NL = 1) inverted indexing methods IVF and IMI in
[4], (2) the Prob-RAW method [8], and (3) tree-based indexing

method [13]. In the following, results marked with hard, soft
and ranked are hard, soft and ranked labels predicted by the
LTI-ST network.

1) Results on the SOP Dataset: Performance comparison
of group results on the SOP dataset for two test scenarios
Train→Test and Test→Test are shown in Table II. We can
see that, on the SOP dataset, our method with different
labeling schemes obtains the best group performance in both
Train→Test and Test→Test scenarios. From the results of
Train→Test, we can see that the group accuracy of hard labels,
soft labels, and ranked labels are very close. When the number
of groups is 256, the ranked labels obtain the best result,
0.78% and 1.26% higher than those by the Prob-RAW method
for codebook (NL = 1) and tree (NL = 8), respectively.
When the number of groups is 512, the soft labels and hard
labels obtain the best results for codebook (NL = 1) and tree
(NL = 9), outperforming the Prob-RAW method by 1.52%
and 3.19%, respectively. These results show that the class-
based labeling methods and the r -NN based labeling method
are similar for zero-shot learning to index, and better than
other indexing methods, especially for tree-based indexing
(NL = 8 and NL = 9 in this experiments). From the results of
Test→Test, we can see that the hard labels perform better than
soft and ranked labels. This is because the index prediction
network learnt based on the hard labels might be easily over-
fitting in the scenario of Test→Test, thus obtain better group
performance.

The comparison of retrieval results with the codebook-based
(NL = 1) indexing methods and tree-based (NL = 8) indexing
methods for scenarios Train→Test and Test→Test are shown
in Fig. 6. Figs. 6a, 6b, 6c and 6d show results based on the
exhaustive in-group retrieval method. Figs. 6e, 6f, 6g and 6h
show results based on the HNSW in-group retrieval method.

From Fig. 6, we can see that our learning-based indexing
method is much better than those distance-based indexing

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

510 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE II

THE COMPARISON OF GROUP ACCURACY(%) FOR DIFFERENT NUMBER OF GROUPS AND DIFFERENT NUMBER OF TREE LAYERS ON THE SOP DATASET
FOR Train→Test AND Test→Test (∗ IS OUR RESULTS BASED ON THE RANKED LABELS AND THE MLP IS SIMILAR WITH [8].)

TABLE III

THE COMPARISON OF GROUP ACCURACY(%) FOR DIFFERENT NUMBER OF GROUPS AND DIFFERENT NUMBER OF TREE LAYERS ON THE IMAGENET
FOR Train→Test AND Test→Test (∗ IS OUR RESULTS BASED ON THE RANKED LABELS AND THE MLP IS SIMILAR WITH [8].)

methods. From Figs. 6a, 6b, 6e and 6f, we can see that the
retrieval performance of our method with hard labels, soft
labels, ranked labels and the Prob-RAW method are very close
to each other for codebook (NL = 1). They all outperform the
distance-based IVF and IMI methods. From Figs. 6c, 6d, 6g,
6h, we can see that the ranked labeling method obtains the
best performance in the Train→Test scenario. This suggests
that the ranked labels are much more efficient for zero-shot
learning to index. However, the hard labels obtain the best
performance for Test→Test, which indicates that the network
supervised by hard labels is prone to over-fitting.

2) Results on the ImageNet Dataset: Table III shows the
comparison of group performance on the ImageNet dataset for
test scenarios of Train→Test and Test→Test. It can be seen
that our method obtains the best group performance except the
case of 256 groups with one layer in the Train→Test scenario.
From the results of Train→Test, we can see that the soft labels
obtain the best result when the number of groups is 256 and the
number of layers is 8, outperforming the Prob-RAW method
by 1.42%. When the number of groups is 512, soft labels also
obtain the best results for both codebook (NL = 1) and tree
(NL = 9), 0.44% higher than the IVF method for NL = 1
and 4.99% higher than the Prob-RAW method for NL = 9.
For the Test→Test scenario, the results are similar to those in
Table II.

The comparison of retrieval results for codebook-based
(NL = 1) indexing methods and tree-based (NL = 8) indexing
methods for scenarios Train→Test and Test→Test are shown
in Fig. 7. Figs. 7a, 7b, 7c and 7d are results based on the
exhaustive in-group retrieval. Figs. 7e, 7f, 7g and 7h are results
based on the HNSW in-group retrieval. It can be seen that
our LTI-ST indexing method performs much better than the

distance-based indexing methods. From Figs. 7a and 7e, we
can see that the retrieval performance of our method with
hard, soft, and ranked labels, and the Prob-RAW method are
very close to each other for the train→test scenario with
NL = 1. All of them are better than those of the distance-
based IVF and IMI methods. From Figs. 7b, 7d, 7f and 7h,
we can see that the hard labels obtain the best performance
for Test→Test, the main reason is that the model is over-fitting
with accurate labels information. From Figs. 7c and 7g, we can
see that the ranked labels obtain the best retrieval performance
for Train→Test with NL = 8. The main reason is that the
index prediction network learnt with ranked labels can obtain
better generalization ability for Train→Test in our zero-shot
setting.

3) Retrieval Time Comparison on the SOP and ImageNet
Datasets: The running time depends on specific machines
and implementation. Here, we implemented our method with
the faiss [63] framework and Python. The retrieval time on
the SOP and ImageNet datasets of our method with and
without HNSW in-group retrieval is shown in Table IV.
We can see that most of the running time is spent on
the Python loop (loop of 60502 and 25000 for the SOP
and ImageNet datasets, respectively). According to results
in Table IV, considering both Recall@1 and time spent, we
can see that the best performance is obtained by our index
prediction with ranked labels for zero-shot setting on both the
SOP and ImageNet datasets. This indicates that the ranked
labels have better generalization ability for zero-shot setting.
Comparing the retrieval time with exhaustive and HNSW
in-group retrieval on the ImageNet dataset, we can see that the
retrieval time can be greatly reduced by the HNSW in-group
retrieval.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

KAN et al.: ZERO-SHOT LEARNING TO INDEX ON SEMANTIC TREES FOR SCALABLE IMAGE RETRIEVAL 511

Fig. 7. The comparison with state-of-the-art codebook-based (NL = 1) and tree-based (NL = 8) indexing methods on the ImageNet dataset (the group
size is 256). Figs. 7a, 7b, 7c, and 7d are results based on the exhaustive in-group retrieval method. Figs. 7e, 7f, 7g, and 7h are results based on the HNSW
in-group retrieval method.

TABLE IV

THE COMPARISON OF RECALL@1 (%) V.S. RETRIEVAL TIME FOR DIFERENT METHODS ON THE SOP AND IMAGENET FOR TRAIN→TEST SCENARIO

TABLE V

THE GROUP ACCURACY(%) ON THE SOP DATASET FOR CODEBOOK (NL = 1) AND TREE (NL = 8)

D. Ablation Studies

We conduct ablation studies to evaluate the effectiveness of
different components of our method.

1) The Effects of Different Loss Functions: In our LTI-ST
method, we have introduced three loss functions corresponding
to three different labeling schemes, the combined loss of the
concatenated feature, and the center loss. In the following
experiments, we study the effects of different loss functions.
We conduct experiments on the SOP dataset and fix the group
size as 256. Table V shows the group accuracy of Train→Test
and Test→Test for codebook (NL = 1) and tree (NL = 8).
The third row shows the results when each individual labels
loss function is used. In the fourth row, we show the combined
loss. In the fifth row, we show the center loss. We can see that
for the Train→Test scenario, each function contributes to the
overall performance. The combination of them all yield the
best performance. But, for the Test→Test, it achieves the best
performance when the hard labels are used. From this ablation

TABLE VI

THE GROUP ACCURACY(%) ON THE SOP DATASET WITH AND WITHOUT
END-TO-END TRAINING

study, we can see that the proposed LTI-ST network and its
design of loss functions are valid and effective for zero-shot
learning to index.

2) Performance of End-to-End Training: In this work, we
assume that the feature embedding network is pre-trained to
accelerate the training process. We then use the embedded
feature to learn and predict the index for the input image.
In our experiments, for zero-shot learning to index in the
Train→Test scenario, it is more efficient to perform the end-
to-end training of the feature embedding network and the
LTI-ST network. Using the hard labels on the index prediction

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

512 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 8. The performance of visited list length v.s. Recall@1 on the SOP
dataset (the group size is 256).

TABLE VII

THE GROUP ACCURACY(%) ON THE SOP DATASET WITH END-TO-END

TRAINING BY SETTING DIFFERENT λ (WEIGHT OF CENTER LOSS)

TABLE VIII

THE GROUP ACCURACY(%) ON THE SOP DATASET WITH END-TO-END
TRAINING BY SETTING DIFFERENT SEMANTIC TREE LAYERS NL

network, Table VI shows the group performance on the SOP
dataset with and without end-to-end training. Fig. 8 shows
the corresponding retrieval performance. We can see that, if
the end-to-end training is applied, the performance of our
current algorithm (currently without end-to-end training) can
be further improved, outperforming existing methods by an
even larger margin.

3) The Impact of Hyperparameters: The major hyperpa-
rameters of our method include the weight of center loss
λ, the number of semantic tree layers NL , the number of
visited groups r at the test stage, and the dimension of feature
embedding d . In the following ablation studies, we evaluate
the effect of λ and NL on the SOP dataset with hard labels
and end-to-end training. Results are shown in Tables VII
and VIII, respectively. From Table VII, we can see that the
best performance is obtained by setting λ as 0.001, which
was used in all previous experiments. From Table VIII, it can
be seen that the group accuracy decreases with NL . This is
because there will be more information loss with quantization
process in semantic tree encoding process and further reduces
the accuracy of the encoded semantic tree labels. Another
reason is that the semantic division between groups becomes
more fine-grained when NL increases, which will make it more
difficult for index prediction.

In the following experiments, we study the effects of r and
d on the SOP dataset with three labeling schemes with zero-
shot setting. Results are shown in Figs. 9a and 9b, respectively.
In Fig. 9, we fix the group size as 256. From Fig. 9a, we
can see that as r increases, Recall@1 gradually increases, and
tends to stabilize when r is between 8 and 12. In Fig. 9b, we
fix r as 12. From Fig. 9b, we can see that the performance

Fig. 9. The performance with different r and d on the SOP dataset (the
group size is 256).

Fig. 10. Some random selected encoded semantic trees from the SOP training
dataset (the group size is 256). (a)–(c) represent three semantic tree labels of
three training classes.

Fig. 11. Some random selected predicted semantic trees from the SOP test
dataset (the group size is 256). (a)–(c) represent three predicted semantic trees
of three test images.

Fig. 12. Distributions of random selected four classes from the SOP test
dataset (the group size is 256). Figs. 12a, 12b and 12c are the computed
distributions based on the Euclidean distance. Figs. 12d, 12e and 12f are the
predicted distributions based on the learnt LTI-ST model. Figs. 12a and 12d,
12b and 12e, 12c and 12f are pairs of distribution of same class, respectively.

of our method gradually increases with the increase of d , and
saturates at d = 512.

4) Impact of the Encoder Networks: The encoder net-
work is crucial for the index performance. Here, we conduct
experiment on the SOP dataset with the ResNet-50 backbone
network. By setting d = 512, r = 12, NL = 8, and using
the ranked labeling scheme to guide the learning of index
prediction network, the Recall@1 for Train→Test is 75.4%,
higher 4.4% than with the GoogLeNet backbone (71.0%). This
experiment indicates that the performance of image retrieval
can be greatly increased with a stronger encoder network.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

KAN et al.: ZERO-SHOT LEARNING TO INDEX ON SEMANTIC TREES FOR SCALABLE IMAGE RETRIEVAL 513

Fig. 13. The index distributions of the SOP test set based on the Euclidean distance and LTI-ST methods, respectively.

TABLE IX

THE STANDARD DEVIATIONS OF LAST FOUR LAYERS FOR EUCLIDEAN

DISTANCE AND LTI-ST INDEX DISTRIBUTIONS

5) Semantic Tree Encoding: As analyzed in Section III B,
the semantic tree encoding should form valid paths on the tree.
Fig. 10 shows some samples of encoded semantic trees. It can
be seen that each semantic tree consists of one or more valid
paths. As shown in Figs. 10a and 10b, the semantic trees have
a main path, and most samples with the same class label are
distributed on this path. However, as shown in Fig. 10c, there
still exists some semantic trees that consist of more than one
salient paths, which can decrease the labeling performance,
especially for hard labeling scheme. This is why the index
performance of hard labeling scheme is slightly worse than
the soft labeling and ranked labeling schemes for zero-shot
learning to index.

6) Semantic Tree Decoding: Samples of predicted semantic
trees are shown in Fig. 11. It can be seen that each predicted
semantic tree consists of a number of valid paths with a salient
path. However, as shown in Fig. 11c, a salient path may not
contain a truly salient node. Thus, we should set r ≥ θ at the
semantic tree decoding stage to ensure that an accurate index
value can be obtained at each layer. In our experiments, we set
the value of θ as 12 and 6 for the SOP and ImageNet datasets,
respectively.

7) Index Distribution: The distribution of images on the leaf
nodes affects the retrieval performance. More samples a leaf
node contains, more time it will take to retrieve a candidate
set from that node. If the image samples from one class are
distributed to more leaf nodes, we need to visit more nodes
to retrieve all the samples in that class. This work considers
nearest neighbor search. Example pairs of distributions of
random selected classes from the SOP test dataset are shown in
Fig. 12. Figs. 12a, 12b and 12c are the distributions based on
the Euclidean distance. Figs. 12d, 12e and 12f are distributions
based on the learnt LTI-ST model. Figs. 12a and 12d, 12b and
12e, 12c and 12f are the pairs of distributions of same class,
respectively.

From Fig. 12, we can see that the distributions of
LTI-ST-based index are more aggregated than the distributions
of Euclidean distance-based indexing schemes, especially in
Figs. 12c and 12f. This indicates that the index efficiency of

our LTI-ST method is higher than those of the distance-based
index methods for zero-shot index problem. From Figs. 12b
and 12e, we can see that the predicted index by the learnt
LTI-ST model are different from the Euclidean distance-based
index.

Furthermore, we compute the index distribution of the SOP
test set for Euclidean distance and LTI-ST, shown in Figs.
13a and 13b, respectively. From Fig. 13, we can see that
the number of examples in the largest group by our LTI-ST
model is smaller than those by the distance-based method.
At the retrieval stage, the average number of visited list length
of LTI-ST will be smaller. Also, we compute the standard
deviations of last four layers for Euclidean distance (Fig. 13a)
and LTI-ST (Fig. 13b) index distributions, results are shown
in Table IX. We can see that the index distribution of LTI-
ST has lower standard deviations than the Euclidean distance
on these layers, which indicates that the index distribution of
LTI-ST is more uniform than the Euclidean distance.

In Fig. 14, we show some indexed examples obtained by our
LTI-ST method on the SOP and ImageNet test sets, respec-
tively. Fig. 14a and Fig. 14b are randomly selected 8 groups
from the SOP and ImageNet indexed results (the group size is
256). Images of each row are selected from corresponding
group center. For example, images on the first row of the
SOP and ImageNet datasets are brown wooden furniture and
wedding gowns, respectively. From Fig. 14, we can see that
images indexed to one group contain similar objects or similar
scenes, thus share some similar semantic information.

E. Discussion

In the above experiments, the proposed three different label-
ing schemes are used in the index prediction network. We have
conducted experiments to evaluate their performance. From
these results in Tables II, III and V, we can see that the index
prediction with the hard labels achieves the best performance
for the Test → Test scenario. However, for the zero-shot
scenario (Train → Test), the best index prediction performance
is achieved by the soft and ranked labels. According to Figs.
6c, 6g, 7c and 7g, the top-1 retrieval performance with the
ranked labels is a slightly better than the soft labels. For
non top-1 retrieval results, the soft labels show slightly better
performance than the ranked labels. This is because the soft
labels can better characterize the average similarity for groups
of samples in a feature similarity-based image retrieval setting
than the ranked labels.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

514 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 14. Some examples indexed by the zero-shot LTI-ST method on the SOP and ImageNet test sets, respectively.

V. CONCLUSION

In this paper, we have developed a zero-shot learning to
index on semantic trees for scalable image retrieval. On the
training set, using embedded learnt features, we constructed a
hierarchical tree of image clusters and encoded each training
image with a binary code being mapped on this tree. This
binary code is then used to generate labels for the training
images. The image-label pairs are used to train an LTI-ST
model. After the LTI-ST network is trained, it can be used to
predict the tree indexing structure for test images. Experimen-
tal results on the SOP and ImageNet datasets demonstrated
that the proposed method outperforms the state-of-the-art
index learning methods while providing zero-shot and scalable
capabilities, which are highly desirable in practice. Future
promising work could be focused on exploring the semantic
tree information with ranked labels to build the model of
unsupervised metric learning or representation learning with
indexing.

REFERENCES

[1] B. Klein and L. Wolf, “End-To-End supervised product quantization
for image search and retrieval,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 5041–5050.

[2] S. Li, Z. Chen, J. Lu, X. Li, and J. Zhou, “Neighborhood preserving
hashing for scalable video retrieval,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 8212–8221.

[3] Z. Wang, L. Zheng, Y. Li, and S. Wang, “Linkage based face clustering
via graph convolution network,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 1117–1125.

[4] A. Babenko and V. Lempitsky, “The inverted multi-index,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 6, pp. 1247–1260, Jun. 2015.

[5] D. Baranchuk, A. Babenko, and Y. Malkov, “Revisiting the inverted
indices for billion-scale approximate nearest neighbors,” in Proc.
15th Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 2018,
pp. 209–224.

[6] S. Liu, J. Shao, and H. Lu, “Generalized residual vector quantization
and aggregating tree for large scale search,” IEEE Trans. Multimedia,
vol. 19, no. 8, pp. 1785–1797, Aug. 2017.

[7] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in Proc. 9th IEEE Int. Conf. Comput. Vis.,
Nice, France, Oct. 2003, pp. 1470–1477.

[8] C.-Y. Chiu, A. Prayoonwong, and Y.-C. Liao, “Learning to index for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 42, no. 8, pp. 1942–1956, Aug. 2020.

[9] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one
billion vectors: Re-rank with source coding,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Prague, Czech Republic,
May 2011, pp. 861–864.

[10] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proc. 23rd Int. Conf. Mach. Learn. (ICML), Pittsburgh,
PA, USA, Jun. 2006, pp. 97–104.

[11] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image
descriptor matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Anchorage, AK, USA, Jun. 2008, pp. 24–26.

[12] M. E. Houle and M. Nett, “Rank-based similarity search: Reducing
the dimensional dependence,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 1, pp. 136–150, Jan. 2015.

[13] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 11, pp. 2227–2240, Nov. 2014.

[14] R. Liu, S. Wei, Y. Zhao, and Y. Yang, “Indexing of the CNN features for
the large scale image search,” Multimedia Tools Appl., vol. 77, no. 24,
pp. 32107–32131, Dec. 2018.

[15] S. Kan, L. Cen, X. Zheng, Y. Cen, Z. Zhu, and H. Wang,
“A supervised learning to index model for approximate nearest neighbor
image retrieval,” Signal Process., Image Commun., vol. 78, pp. 494–502,
Oct. 2019.

[16] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[17] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 744–755,
Apr. 2014.

[18] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantiza-
tion for approximate nearest neighbor search,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 2329–2336.

[19] L. Jin, X. Shu, K. Li, Z. Li, G.-J. Qi, and J. Tang, “Deep ordinal
hashing with spatial attention,” IEEE Trans. Image Process., vol. 28,
no. 5, pp. 2173–2186, May 2019.

[20] S. Zhang, J. Li, and B. Zhang, “Semantic cluster unary loss for
efficient deep hashing,” IEEE Trans. Image Process., vol. 28, no. 6,
pp. 2908–2920, Jun. 2019.

[21] C. Deng, E. Yang, T. Liu, J. Li, W. Liu, and D. Tao, “Unsupervised
semantic-preserving adversarial hashing for image search,” IEEE Trans.
Image Process., vol. 28, no. 8, pp. 4032–4044, Aug. 2019.

[22] C. Deng, E. Yang, T. Liu, and D. Tao, “Two-stream deep hash-
ing with class-specific centers for supervised image search,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2189–2201,
Jun. 2020.

[23] M. Opitz, G. Waltner, H. Possegger, and H. Bischof, “Deep met-
ric learning with BIER: Boosting independent embeddings robustly,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 276–290,
Feb. 2020.

[24] S. Kan, Y. Cen, Z. He, Z. Zhang, L. Zhang, and Y. Wang, “Supervised
deep feature embedding with handcrafted feature,” IEEE Trans. Image
Process., vol. 28, no. 12, pp. 5809–5823, Dec. 2019.

[25] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-
similarity loss with general pair weighting for deep metric learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Long Beach, CA, USA, Jun. 2019, pp. 5022–5030.

[26] X. Wang, H. Zhang, W. Huang, and M. R. Scott, “Cross-batch
memory for embedding learning,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun. 2020,
pp. 6387–6396.

[27] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search in Hamming
space with multi-index hashing,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 6, pp. 1107–1119, Jun. 2014.

[28] S. Eghbali, H. Ashtiani, and L. Tahvildari, “Online nearest neighbor
search using Hamming weight trees,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 42, no. 7, pp. 1729–1740, Jul. 2020.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

KAN et al.: ZERO-SHOT LEARNING TO INDEX ON SEMANTIC TREES FOR SCALABLE IMAGE RETRIEVAL 515

[29] E.-J. Ong and M. Bober, “Improved Hamming distance search
using variable length hashing,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 2000–2008.

[30] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, Sep. 1977.

[31] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” J. ACM, vol. 45, no. 6, pp. 891–923, Nov. 1998.

[32] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., San Juan, Puerto Rico,
Jun. 1997, pp. 1000–1006.

[33] K. Fukunaga and P. M. Narendra, “A branch and bound algorithm for
computing k-Nearest neighbors,” IEEE Trans. Comput., vol. C-24, no. 7,
pp. 750–753, Jul. 1975.

[34] A. W. Moore, “The anchors hierarchy: Using the triangle inequality
to survive high dimensional data,” in Proc. 16th Conf. Uncertainty
Artif. Intell. (UAI). Stanford, CA, USA: Stanford Univ., Jun./Jul. 2000,
pp. 397–405.

[35] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in Proc. 4th Annu. ACM/SIGACT-SIAM
Symp. Discrete Algorithms, Austin, TX, USA, Jan. 1993, pp. 311–321.

[36] T. Liu, A. W. Moore, A. G. Gray, and K. Yang, “An investigation
of practical approximate nearest neighbor algorithms,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), Vancouver, BC, Canada, Dec. 2004,
pp. 825–832.

[37] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), vol. 2, New York, NY, USA, Jun. 2006, pp. 2161–2168.

[38] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and
matching for object class recognition,” in Proc. Brit. Mach. Vis. Conf.,
Edinburgh, U.K., Sep. 2006, pp. 789–798.

[39] G. Schindler, M. A. Brown, and R. Szeliski, “City-scale location
recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Minneapolis, MN, USA, Jun. 2007, pp. 18–23.

[40] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo, “Fast neigh-
borhood graph search using Cartesian concatenation,” in Multimedia
Data Mining and Analytics—Disruptive Innovation. Springer, 2015,
pp. 397–417.

[41] J. Wang and S. Li, “Query-driven iterated neighborhood graph search
for large scale indexing,” in Proc. 20th ACM Multimedia Conf. (MM),
Nara, Japan: ACM, Oct./Nov. 2012, pp. 179–188.

[42] E. Chávez and E. S. Tellez, “Navigating K -nearest neighbor graphs
to solve nearest neighbor searches,” in Proc. 2nd Mexico Conf. Pattern
Recognit. Adv. Pattern Recognit. (MCPR), in Lecture Notes in Computer
Science, vol. 6256. Puebla, Mexico: Springer, Sep. 2010, pp. 270–280.

[43] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,” Inf.
Syst., vol. 45, pp. 61–68, Sep. 2014.

[44] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4,
pp. 824–836, Apr. 2020.

[45] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest
neighbor search with the navigating spreading-out graph,” Proc. VLDB
Endowment, vol. 12, no. 5, pp. 461–474, Jan. 2019.

[46] C. Fu, C. Wang, and D. Cai, “Satellite system graph: Towards
the efficiency up-boundary of graph-based approximate nearest
neighbor search,” 2019, arXiv:1907.06146. [Online]. Available:
http://arxiv.org/abs/1907.06146

[47] W. Wang, V. W. Zheng, H. Yu, and C. Miao, “A survey of zero-shot
learning: Settings, methods, and applications,” ACM Trans. Intell. Syst.
Technol., vol. 10, no. 2, pp. 1–37, 2019.

[48] M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, and
E. P. Xing, “Rethinking knowledge graph propagation for zero-shot
learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Long Beach, CA, USA, Jun. 2019, pp. 11487–11496.

[49] D. Huynh and E. Elhamifar, “A shared multi-attention framework for
multi-label zero-shot learning,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 8776–8786.

[50] K. Wei, M. Yang, H. Wang, C. Deng, and X. Liu, “Adversarial fine-
grained composition learning for unseen attribute-object recognition,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, South Korea,
Oct. 2019, pp. 3740–3748.

[51] B. Brattoli, J. Tighe, F. Zhdanov, P. Perona, and K. Chalupka, “Rethink-
ing zero-shot video classification: End-to-end training for realistic
applications,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 4613–4623.

[52] Y. Shen, L. Liu, F. Shen, and L. Shao, “Zero-shot sketch-image hashing,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City,
UT, USA, Jun. 2018, pp. 3598–3607.

[53] B. Chen and W. Deng, “Hybrid-attention based decoupled metric learn-
ing for zero-shot image retrieval,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019,
pp. 2750–2759.

[54] X. Xu, M. Yang, Y. Yang, and H. Wang, “Progressive domain-
independent feature decomposition network for zero-shot sketch-based
image retrieval,” in Proc. 29th Int. Joint Conf. Artif. Intell., Jul. 2020,
pp. 984–990.

[55] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA,
Jun. 2015, pp. 1–9.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[57] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist. (AISTATS), in
JMLR Proceedings, vol. 15. Fort Lauderdale, FL, USA: JMLR.org,
Apr. 2011, pp. 315–323.

[58] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[59] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric
learning via lifted structured feature embedding,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 4004–4012.

[60] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[61] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of
extrinsic clustering evaluation metrics based on formal constraints,” Inf.
Retr., vol. 12, no. 4, pp. 461–486, Aug. 2009.

[62] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. ACM Int. Conf. Multimedia (MM), Orlando, FL, USA,
2014, pp. 675–678.

[63] J. Johnson, M. Douze, and H. Jegou, “Billion-scale similarity search
with GPUs,” IEEE Trans. Big Data, early access, Jun. 7, 2019, doi:
10.1109/TBDATA.2019.2921572.

Shichao Kan received the B.E. and M.S. degrees
from the School of Computer and Information Sci-
ence, Beijing Jiaotong University, Beijing, China,
in 2014 and 2016, respectively, where he is currently
pursuing the Ph.D. degree. From 2019 to 2020, he
was a Visiting Student Researcher with the Depart-
ment of Computer Science, University of Missouri,
Columbia, MO, USA. His research interests include
large-scale image retrieval, object search, metric
learning, and deep learning.

Yi Cen received the Ph.D. degree from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2014. He is currently a Lecturer
with the School of Information Engineering, Minzu
University of China, Beijing. His research interests
include compressed sensing, sparse representation,
and low-rank matrix reconstruction.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TBDATA.2019.2921572

516 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Yigang Cen received the Ph.D. degree in control
science engineering from the Huazhong University
of Science Technology, Wuhan, China, in 2006.
In 2006, he joined Signal Processing Center, School
of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore, as a Research
Fellow. From 2014 to 2015, he was a Visiting
Scholar with the Department of Computer Science,
University of Missouri, Columbia, MO, USA. He is
currently a Professor and a Supervisor of Doctoral
Student with the School of Computer and Informa-

tion Technology, Beijing Jiaotong University, Beijing, China. His research
interests include compressed sensing, sparse representation, low-rank matrix
reconstruction, and wavelet construction theory.

Mladenovic Vladimir is currently an Associate
Professor with the Faculty of Technical Sciences,
University of Kragujevac, Čačak. His research inter-
ests include wireless communication and image
processing.

Yang Li (Graduate Student Member, IEEE) is
currently pursuing the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science, University of Missouri, Columbia, MO,
USA. His current research interests include semi-
supervised learning, unsupervised learning, video
compression, and metric learning.

Zhihai He (Fellow, IEEE) received the B.S. degree
in mathematics from Beijing Normal University,
Beijing, China, in 1994, the M.S. degree in math-
ematics from the Institute of Computational Math-
ematics, Chinese Academy of Sciences, Beijing, in
1997, and the Ph.D. degree in electrical engineering
from the University of California at Santa Barbara,
Santa Barbara, CA, USA, in 2001.

In 2001, he joined Sarnoff Corporation, Princeton,
NJ, USA, as a Member of Technical Staff. In 2003,
he joined the Department of Electrical and Computer

Engineering, University of Missouri, Columbia MO, USA, where he is
currently a Tenured Full Professor. His current research interests include
image/video processing and compression, wireless sensor networks, computer
vision, and cyber-physical systems. He is also a member of the Visual Signal
Processing and Communication Technical Committee of the IEEE Circuits
and Systems Society. He also serves as a technical program committee
member or a session chair of a number of international conferences. He was
a recipient of the 2002 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY Best Paper Award and the SPIE VCIP Young
Investigator Award in 2004. He was the Co-Chair of the 2007 International
Symposium on Multimedia over Wireless in Hawaii. He has served as an
Associate Editor for the textscIEEE Transactions on Circuits and Systems
for Video Technology (TCSVT), the textscIEEE Transactions on Multimedia
(TMM), and the Journal of Visual Communication and Image Representation.
He was also the Guest Editor for the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY (TCSVT) Special Issue on Video
Surveillance.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 26,2020 at 01:47:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

