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Abstract—Depth information has been demonstrated to be use-
ful for saliency detection. However, the existing methods for
RGBD saliency detection mainly focus on designing straightfor-
ward and comprehensive models, while ignoring the transferable
ability of the existing RGB saliency detection models. In this
article, we propose a novel depth-guided transformation model
(DTM) going from RGB saliency to RGBD saliency. The proposed
model includes three components, that is: 1) multilevel RGBD
saliency initialization; 2) depth-guided saliency refinement; and
3) saliency optimization with depth constraints. The explicit
depth feature is first utilized in the multilevel RGBD saliency
model to initialize the RGBD saliency by combining the global
compactness saliency cue and local geodesic saliency cue. The
depth-guided saliency refinement is used to further highlight the
salient objects and suppress the background regions by introduc-
ing the prior depth domain knowledge and prior refined depth
shape. Benefiting from the consistency of the entire object in
the depth map, we formulate an optimization model to attain
more consistent and accurate saliency results via an energy func-
tion, which integrates the unary data term, color smooth term,
and depth consistency term. Experiments on three public RGBD
saliency detection benchmarks demonstrate the effectiveness and
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performance improvement of the proposed DTM from RGB to
RGBD saliency.

Index Terms—Depth cue, energy function optimization, refined
depth shape prior (RDSP), RGBD images, saliency detection,
transformation model.

I. INTRODUCTION

S IMULATING the human visual attention mechanism,
salient object detection aims at locating and segmenting

the interesting part or attractive object from a given scene [1],
which has been widely applied to many vision tasks, such
as retrieval [2], segmentation [3], enhancement [4], and qual-
ity assessment [5]. According to the different processing data,
saliency detection tasks can be roughly divided into three
categories, including: 1) image saliency detection for the indi-
vidual image [6]–[20]; 2) co-saliency detection for the multiple
images [21]–[24]; and 3) video saliency detection for the video
sequences [25]–[28]. When faced with a scene, humans can-
not only capture the appearance of the object through the
visual system but also perceive the depth information of the
scene [29], [30]. Benefiting from the recent development of
3-D sensing technology, depth representation of the scene can
be captured more conveniently and accurately. The effective-
ness of depth information has been demonstrated in many
computer vision tasks, such as image segmentation [31]; super
resolution [32], [33]; and saliency detection [34]–[49].

In the existing RGBD saliency detection methods, depth
information is mainly used in two ways, that is, one directly
and explicitly incorporates it into the feature pool as a sup-
plement to the color feature, and the other is to capture the
implicit attributes from the depth map through some designed
depth descriptors. However, these methods mainly focus
on designing a straightforward and comprehensive RGBD
saliency detection model. In fact, for RGBD saliency detec-
tion, more efforts should be made to make full use of depth
information with the assistance of the existing RGB saliency
models. In this article, we propose a novel depth-guided
transformation model (DTM), which effectively exploits any
existing RGB saliency model to work well in RGBD saliency
scenarios. In the proposed DTM, depth information is uti-
lized in three aspects: 1) saliency initialization; 2) saliency
refinement; and 3) saliency optimization.

Saliency Initialization: For different RGB saliency detec-
tion methods, their performances vary greatly with respective
superiority and drawback, especially for some challenging
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cases, such as the complex scenes and various target types.
Given all that, with the help of the explicit depth cue,
a multilevel RGBD saliency method integrating the global
compactness saliency cue and local geodesic saliency cue
are proposed to generate RGBD saliency initialization of
the proposed transformation model. The global compact-
ness saliency cue combines color compactness and depth
compactness into a formulation as a robust global saliency
representation. The local geodesic saliency cue introduces the
novel depth weight and graph relationship to measure the
saliency from the local perspective. Finally, the original RGB
saliency is combined with the global and local saliency cues
to achieve RGBD saliency initialization, where the depth cue
works as an explicit supplement to the color feature.

Saliency Refinement: In addition to the explicit depth fea-
ture information, some implicit attributes captured from the
depth map are useful to refine the saliency map, such as
the depth domain knowledge and depth shape cue. Therefore,
we propose a depth-guided saliency refinement model to fur-
ther highlight the salient objects and suppress the background
regions by introducing the depth domain knowledge prior and
refined depth shape prior (RDSP). In general, the photogra-
pher usually places the salient object closer to the camera.
Thus, the depth value of the salient object is different from
the distant background region. Based on this prior knowledge,
the prior depth domain knowledge is used to describe the
depth distance mapping information. In addition, an RDSP is
studied to capture the shape information from the depth map,
which introduces the color consistency constraint and refines
optimal seeds selection. The RDSP can obtain more accurate
and complete shape attributes from the depth map.

Saliency Optimization: From the depth map, the interior
of the entire object usually has a consistent depth distribution.
In other words, the depth information is beneficial to improve
the consistency and smoothness of the acquired saliency map.
Thus, we formulate an energy function-based optimization
model to attain more consistent and accurate saliency results,
which integrates the unary data term, color smooth term, and
depth consistency term. The data term controls the updat-
ing degree of the optimization algorithm, the color smooth
term restricts the spatially adjacent regions with similar color
appearance and should be assigned to approximate saliency
scores, and the depth consistency term enforces that adjacent
regions with similar depth distribution should be assigned to
consistent saliency scores.

The main idea of our method is to adapt any existing RGB
saliency model to RGBD images, which could inherit the
performance of RGB image saliency and utilize the depth
information to enhance performance. The contributions of this
article are summarized as follows.

1) The biggest advantage of our method is to fully exploit
the depth cue and provide a general transformation
model going from RGB saliency to RGBD saliency.
The proposed model enables any existing RGB saliency
model to work well in RGBD saliency scenarios with
significant performance improvement.

2) Multilevel RGBD saliency initialization is proposed to
integrate the global compactness and the local geodesic

saliency cues, where the depth feature is used as a
supplement to the color information.

3) To capture more accurate and complete shape
information from the depth map, an RDSP is proposed,
which considers the color consistency constraint and
updates the optimal seeds selection.

4) To improve the accuracy and consistency, an
optimization strategy with depth constraints is designed,
which introduces the depth consistency relationship as
an additional term in the energy optimization function.

The remainder of this article is organized as follows. The
related works on the RGB saliency detection and RGBD
saliency detection are introduced in Section II. Section III
presents the details of the proposed depth-guided transforma-
tion framework. The experimental comparisons and analyses
are discussed in Section IV. Finally, the conclusion is drawn
in Section V.

II. RELATED WORK

A. RGB Image Saliency Detection

The past few decades have witnessed the considerable tech-
nology development and encouraging performance improve-
ment of saliency detection for RGB image, and numerous
bottom-up and top-down models have been presented [6]–[20].

In [7], saliency detection is modeled as the dense and
sparse reconstruction process, and the reconstruction error
is used to measure the saliency of a region. Zhu et al. [8]
proposed a principled optimization framework to achieve
saliency detection by using a robust boundary connectivity
measure. In [11], saliency detection is formulated as a struc-
tured matrix decomposition problem guided by high-level
priors. Yuan et al. [12] proposed a novel saliency detection
method with reversion correction and regularized random walk
ranking, and obtained competitive performance. Recently, deep
learning has demonstrated the superior performance in saliency
detection. Han et al. [13] proposed a bottom-up salient object
detection framework based on the background prior, where
more powerful representations are learned from the stacked
denoising autoencoder, and the separation of salient objects
from backgrounds is formulated as a problem of measuring
reconstruction residuals of deep autoencoders. Li and Yu [14]
proposed an end-to-end deep contrast network for saliency
detection, including the multiscale fully convolutional stream
and the segment-wise spatial pooling stream. Zhang et al. [15]
proposed an encoder–decoder fully convolutional network with
reformulated dropout and hybrid upsampling strategies to
detect the salient object. In [16], short connections are intro-
duced into the skip-layer structures within the holistically
nested edge detector architecture to achieve saliency detec-
tion. Deng et al. [18] proposed a recurrent residual refinement
network (R3Net) for saliency detection, where residual refine-
ment blocks are utilized to recurrently learn the difference
between the coarse saliency map and the ground truth by
alternatively harnessing the low-level and high-level features.
Moreover, some works focus on the performance evaluation
for the saliency detection task [19] or exploit some new data
sources [20].
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Fig. 1. Flowchart of the proposed DTM.

B. RGBD Image Saliency Detection

The depth information is introduced as an additional feature
or a novel depth measure to enhance the identification of the
salient object from the RGBD images, and lots of methods
have been proposed [34]–[49].

Fang et al. [35] combined the color, luminance, texture, and
depth features to calculate the feature contrast and produce
the stereoscopic saliency map. In [36], an anisotropic center-
surround difference (ACSD) measure is proposed to measure
the depth-aware saliency map. Feng et al. [38] proposed a local
background enclosure (LBE) measure to capture the salient
structure from the depth map. Cong et al. [39] proposed a
saliency detection method for RGBD images based on the
depth confidence analysis and multiple cues fusion, where the
depth confidence measure is used to evaluate the quality of
the depth map. Wang and Wang [41] proposed an RGBD
saliency detection method by using the minimum barrier dis-
tance (MBD) transform and multilayer cellular automata-based
saliency fusion. Peng et al. [44] calculated the depth saliency
through a multicontextual contrast model considering the con-
trast prior, global distinctiveness, and background cue of the
depth map. Moreover, a multistage RGBD saliency model was
proposed by combining the low-level feature contrast, mid-
level region grouping, and high-level prior enhancement. The
main difference between our method and the work [44] lies
in how to utilize the depth information. In [44], the depth
information is used as a feature to calculate the local, global,
and background contexts. In contrast, the use of the depth
information in our method is more comprehensive and thor-
ough. First, the depth cue works as an explicit supplement
to the color feature in the saliency initialization model by
combining the global compactness and local geodesic saliency
cues. Second, some implicit attributes captured from the depth
map are used to further refine the saliency map, such as the
depth domain knowledge prior and RDSP. Third, inspired by
the observation that the interior of the entire object usually
has a consistent depth distribution, the depth cue is utilized
to improve the consistency and smoothness of the acquired
saliency map through an energy function-based optimization
model.

The deep-learning technique is also introduced into RGBD
saliency detection and achieves competitive performance.
Qu et al. [45] designed a convolutional neural network to

learn the interaction between the low-level cues and saliency
result for RGBD saliency detection, where the raw saliency
feature vectors are taken as the input. Han et al. [46] proposed
a saliency detection method for RGBD images based on
the convolutional neural network, which transfers the struc-
ture of the color deep network to be applicable for depth
view and fuses both views automatically to obtain the final
saliency map. Chen and Li [47] proposed an end-to-end RGBD
salient object detection network, which fuses both cross-modal
and cross-level features complementarily. Chen et al. [48]
presented a multiscale multipath fusion network with cross-
modal interactions for the RGBD saliency detection, which
advances the traditional two-stream fusion architecture with
a single-fusion path by diversifying the fusion paths and
introducing the cross-modal interactions in multiple layers.
Chen and Li [49] proposed a three-stream attention-aware
multimodal fusion network for the RGBD saliency detection,
where the cross-modal distillation stream is used to augment
the RGB-D representation capacity in the bottom-up path, and
the channel-wise attention mechanism is introduced to adap-
tively select the complementary feature maps in the top-down
inference path.

Most of the above-mentioned RGBD saliency detection
methods are mainly devoted to designing a new model, while
ignoring the transfer ability and superior performance of the
existing RGB saliency detection models. Therefore, in this arti-
cle, we propose a DTM, which transfers the existing RGB
saliency model to RGBD saliency scenarios.

III. PROPOSED METHOD

As shown in Fig. 1, we make full use of the depth
information to enhance the saliency performance and pro-
pose a transformation model from RGB to RGBD saliency.
There are three main steps in the proposed framework. 1) The
multilevel RGBD saliency initialization integrates the global
compactness and the local geodesic saliency cues to generate
the stereoscopic saliency initialization, where the depth feature
is explicitly used as a supplement to the color information.
2) The depth-guided saliency refinement focuses on further
highlighting the salient objects and suppressing the back-
ground regions. It is a propagation procedure to refine and
update the stereoscopic saliency initialization by exploring
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the implicit depth information, that is, depth domain knowl-
edge and depth shape constraint. 3) The saliency optimization
with depth consistency constraints is designed to improve
the accuracy and consistency through an energy function
optimization considering depth consistency. It is called the
optimization model because we design a holistic energy func-
tion to obtain the optimized saliency result by solving the
optimization problem. The details will be introduced in the
following sections.

A. Multilevel RGBD Saliency Initialization

Due to the lack of depth information, the original RGB
saliency detection algorithm may fail to accurately highlight
the salient objects and effectively suppress the background
regions. In order to exploit the depth feature and guarantee
the basic performance of the proposed transformation model,
a multilevel RGBD saliency model is proposed to generate the
RGBD saliency initialization, where the global compactness
saliency cue is worked on as a robust global representation
combining the color compactness and depth compactness, and
the local geodesic saliency cue is utilized to measure the
saliency from the local perspective with the novel depth weight
and graph relationship.

1) Global Compactness Saliency Cue: Inspired by the fact
that the salient region has a compact spread in the spatial
domain, while the background region owns a larger spread
over the entire image, compactness prior is thus widely used
to distinguish the salient object and background region in the
color space. In fact, there is a similar spatial distribution char-
acteristic in the depth domain, that is, the salient region has a
centralized depth distribution near the image center. The com-
pactness cue is a global descriptor that does not rely on any
assumptions and describes the spatial distribution of the entire
image in the given domain. Motivated by this, we integrate the
color compactness and depth compactness into a formulation
to define global saliency.

Following the existing works [44], the input RGB image I
is first abstracted into some compact and homogenous super-
pixels R = {rm}N

m=1 by the SLIC algorithm [50], where N
is the number of superpixels. Here, the superpixel segmen-
tation algorithm considering the depth information also can
be applied, which may further improve saliency performance.
Then, the similarity between two superpixels in the Lab color
space and depth space are, respectively, defined as

{
ac

ij = exp
(−||ci − cj||2/σ 2

)
ad

ij = exp
(−λd · |di − dj|/σ 2

) (1)

where ci represents the mean color value of superpixel ri in
Lab color space, di is the mean depth value of superpixel ri,
σ 2 = 0.1 is a constant to control the strength of the similarity,
λd = exp((1 − md) · CV · H) − 1 is the depth confidence
measure [39], md is the mean value of the depth map, CV
denotes the coefficient of variation, and H represents the depth
frequency entropy. The better the quality the depth map is, the
higher the value λd is.

Combining the color and depth attributes, the global com-
pactness saliency cue is defined as

Sc(ri) = 1 −
∑N

j=1 nj ·
(

ac
ij · ||bj − ui||2 + ad

ij · ||bj − p0||2
)

∑N
j=1 nj ·

(
ac

ij + ad
ij

)
(2)

where ac
ij and ad

ij denote the color and depth similarities
between superpixels ri and rj, respectively; nj is the size of
superpixel rj; bj = [bx

j , by
j ] is the centroid coordinate of super-

pixel rj; p0 represents the coordinate of the image center; and
ui = [ux

i , uy
i ] = [([

∑N
j=1 ac

ij ·nj ·bx
j ]/[

∑N
j=1 ac

ij ·nj]), ([
∑N

j=1 ac
ij ·

nj · by
j ]/[

∑N
j=1 ac

ij · nj])] is the color spatial mean. The com-
pactness cue describes the global saliency by considering the
color and depth attributes, and a higher value indicates the
larger saliency probability.

2) Local Geodesic Saliency Cue: In an image, background
regions are more easily connected to the image boundaries
than the foreground regions. According to this observation,
the saliency of a region can be calculated as the length of
its shortest path to the background nodes, which is called the
geodesic saliency measure [6]. In formulation, a virtual back-
ground node connected to all boundary regions is added to
compute the saliency of the boundary regions, and the geodesic
saliency of a region is defined as the accumulated edge weights
along the shortest path from the region to the virtual back-
ground node on the graph. In this article, we calculate the
geodesic saliency with the assistance of novel depth weight
and optimized graph relationship from the local perspective.

First, an undirected weighted graph G = (υ, ε) is con-
structed, where υ denotes the set of nodes, including all of
the superpixels {rm}N

m=1 plus a virtual background node B, and
ε represents the set of edge link relationships between super-
pixels. In our model, three types of edges are defined: 1) the
neighbor edge that connects the adjacent superpixels; 2) the
boundary edge that connects the superpixel near the image
boundary to the virtual background node; and 3) the back-
ground edge that connects the given background superpixels
to the virtual background node, which is denoted as

ε = {(
ri, rj

)| ri is adjacent to rj
}

∪ {(ri, BV)|ri is on image boundary}
∪ {(ri, BG)|ri is given background}. (3)

In the graph, the background edge is introduced to fur-
ther constrain the link relationship generation. Considering the
RGB saliency, depth cue, and background connectivity prob-
ability, a measurement is designed to evaluate the probability
that a region belongs to the background, which is denoted as

Pb(ri) = Pc(ri) · exp

(
SRGB(ri) + λd · di

σ 2

)
(4)

where Pc(ri) is the background connectivity probability of
superpixel ri defined as [8], SRGB(ri) is the input RGB saliency
value of superpixel ri, and di is the mean depth value of super-
pixel ri. The smaller the RGB saliency and depth values, the
higher the background connectivity probability, and the larger
the Pb value is, indicating the superpixel is more likely to be a
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background region. Then, the top 20% superpixels with larger
Pb values will be selected as the background seeds to generate
the boundary edges.

The edge weight between two superpixels is represented as

wij =
{

ac
ij · ad

ij, if
(
ri, rj

) ∈ ε

0, otherwise
(5)

where (ri, rj) ∈ ε denotes the connected superpixels ri and rj

on the graph.
Finally, the local geodesic saliency cue of superpixel r is

calculated as the accumulated edge weights along the shortest
path from r to a virtual background node B on the graph

SG(r) = min
r1=r,r2,...,rN=B

N∑
i=1

wi,i+1, (ri, ri+1) ∈ ε. (6)

3) RGBD Saliency Initialization: Considering that com-
pactness saliency is a global measure that does not rely on
any assumptions and original saliency result, we first fuse it
with the intersection between the global compactness saliency
and local geodesic saliency. Then, combined with the RGB
saliency result to generate the RGBD saliency initialization as

SML(ri) = 1

2
(SRGB(ri) + N[SC(ri) + SC(ri) · SG(ri)]) (7)

where SRGB(ri), SC(ri), and SG(ri) denote the input RGB
saliency, global compactness saliency, and local geodesic dis-
tance saliency of superpixel ri, respectively, and N[ · ] is a
min–max normalization function.

B. Depth-Guided Saliency Refinement

The multilevel RGBD saliency model provides an initial-
ization of the transformation framework by using the explicit
depth feature. In the depth-guided saliency refinement, we
exploit the implicit depth information to refine the saliency
map. Generally, the salient object is placed near the camera by
a photographer when taking a picture. Thus, the object with a
large depth magnitude tends to be salient. Moreover, the depth
distribution between the foreground and background regions
is different. Therefore, the depth domain knowledge prior,
including the depth distance and depth contrast, is proposed to
refine the saliency map. In addition, although the depth map
does not provide rich texture information as a color image,
it provides effective shape attribute representation. Based on
this, the RDSP refinement is proposed to capture the shape
constraint from the depth map and refine the salient region.

1) Depth Domain Knowledge Prior: From a depth map,
we can observe that: a) the salient object tends to be close the
camera with a large depth magnitude and b) the salient object
could be identified by the depth contrast compared with the
background regions. However, limited by the depth-sensing
technology, the poor quality of the depth map may degenerate
the saliency performance. Thus, according to the quality of the
depth map, the depth contrast and depth weighting are used as
the prior depth domain knowledge to refine the RGBD saliency
initialization. When the quality of the depth map is reliable
(i.e., λd ≥ τ1), the depth contrast could better describe the
depth saliency characteristic, which is directly used to refine

the initial saliency map. When the quality of the depth map
is tolerable (i.e., τ2 ≤ λd < τ1), the depth distance relation-
ship is used to weigh the initial saliency map. When the depth
map quality is poor (i.e., λd < τ2), which is unable to pro-
vide enough effective and accurate auxiliary information for
saliency detection, we only retain the initial saliency result.
Therefore, the saliency model with depth domain knowledge
prior refinement is defined as

SDDK(ri) =
⎧⎨
⎩

1
2 (SML(ri) + SDC(ri)), λd ≥ τ1
SML(ri) · di, τ2 ≤ λd < τ1
SML(ri), otherwise

(8)

where SML(ri) is the multilevel RGBD saliency initialization
of superpixel ri; di is the mean depth value of superpixel ri; τ1
and τ2 are set to 0.8 and 0.3 in the experiments, respectively;
and SDC(ri) = ∑N

j=1,j �=i |di − dj| · exp(−||bi − bj||2/σ 2) is the
depth contrast of superpixel ri.

2) Refined Depth Shape Prior: From a depth map, some
implicit attributes can be used to refine the saliency result, such
as the shape and contour. In [21], depth shaper prior (DSP) was
proposed to capture the depth shape attribute, in which some
salient seeds are selected based on the given saliency map, and
then propagated to generate the depth shape prior. However,
there are two key issues that need to be further addressed.

(a) The depth map can better depict the shape and con-
tour information of the object, while lacking an effective
description of the textures and details because it is a gray
image. Moreover, in the depth map, the ground area
near the camera usually has a larger depth value, and
even its depth value is almost the same as the salient
object. The original DSP algorithm only depends on
the depth value during propagation, which may induce
some good-quality depth data, which fails to obtain a
clear shape description. Fortunately, this problem can
be easily solved in the color image. Therefore, the
color consistency constraint is introduced to enhance the
completeness of the entire object.

(b) In order to bridge the relationship between the salient
object and the depth shape, some salient regions are
selected as root seeds in the DSP algorithm. However,
the saliency value that is used as the sole selection cri-
terion seems too one-sided, which may introduce some
unexpected regions, such as the regions located on the
image boundary, and degenerate the accuracy of the
depth shape capturing. Therefore, the location constraint
is introduced to further filter the initial salient seeds and
achieve more robust propagation seeds.

To this end, an upgrade version called RDSP is proposed,
which introduces the color constraint and refines the propaga-
tion seed selection. First, the top-K superpixels with highest
saliency values after the depth domain knowledge prior refine-
ment are selected as the initial salient seeds. Then, half of the
superpixels closer to the image center in the initial seed set
are determined as the root propagation seeds.

Similar to the DSP algorithm, depth propagation is applied
to each root propagation seeds based on the smoothness
and consistency decisions to obtain the depth shape result.
Different from the DSP method, our RDSP method introduces

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on August 13,2020 at 13:59:17 UTC from IEEE Xplore.  Restrictions apply. 



3632 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 8, AUGUST 2020

the color constraint in the process of determining neighbor-
hood child nodes. In other words, the selected child nodes
need to satisfy two constraints: a) the depth values between
the root node and the parent node should be approximated
and b) the color distribution with the parent node should be
similar.

In the l-loop propagation, the superpixels directly adjacent
to the l − 1-loop child nodes that satisfy the smoothness and
consistency decisions are selected as the l-loop child nodes.

a) Smoothness Decision: The depth difference with the
color constraint between the neighbor superpixel and
l−1-loop child seeds should be less than a given thresh-
old T1, as N[|dnq − dcl−1 | · (1 − ac

nq,cl−1
)] ≤ T1, where

dnq is the depth value of the neighbor superpixel rnq,
dcl−1 is the average depth value of l − 1-loop child
seeds, ac

nq,cl−1
is the color similarity between superpix-

els rnq and l − 1-loop child seeds, and T1 is set to 0.1
as suggested in [21].

b) Consistency Decision: The depth difference with the
color constraint between the neighbor superpixel and
root seed should be smaller than a given threshold T2, as
N[|dnq − drk| · (1 − ac

nq,rk)] ≤ T2, where drk is the depth
value of the root seed rrk, ac

nq,rk is the color similarity
between superpixels rnq and root seed rrk, and T2 is set
to 0.2 as suggested in [21].

The RSDP value of the child node rcp in the l-loop from
the root seed rk is defined as

RDSPk
(
rcp

) = 1 − min
(|dcpl

− dcl−1 |, |dcpl
− drk|

)
(9)

where dcpl
denotes the depth value of the child node rcp in the

l-loop, dcl−1 is the average depth value of all child seeds in
the l − 1-loop, and drk represents the depth value of the root
seed rrk. The loop propagation will be continued until there is
no neighboring superpixel that satisfies these two decisions.

Finally, the depth domain knowledge prior and the RDSP
are combined to generate the depth-guided saliency refinement
result as

SDR(ri) = N[SDDK(ri) + RDSP(ri)] (10)

where SDDK(ri) denotes the saliency value of superpixel ri

with depth domain knowledge prior refinement, RDSP(ri) =
(
∑K

k=1 RDSPk(ri))/K is the average RDSP value of super-
pixel ri derived from all root seeds, and N[ ·] is a min–max
normalization function.

The visual comparisons between the DSP and RDSP are
presented in Fig. 2, where the third and last columns show
the DSP and RDSP maps, respectively. As we can see, the
DSP algorithm cannot capture the depth shape effectively with
clear backgrounds so that the quality of the input depth map is
degraded. Benefiting from the depth decisions with the color
constraint and root seeds filtering, our RDSP descriptor accu-
rately captures the shape of the salient object from the depth
map and effectively suppresses the background interference.
Even for the depth map with low contrast between the fore-
ground and background, such as the third image, the RDSP
method can still extract the shape completely.

Fig. 2. Visual illustration of the proposed RDSP descriptor. (a) RGB image.
(b) Depth map. (c) DSP map. (d) RDSP map.

C. Saliency Optimization With Depth Constraints

From the depth map, in addition to providing an effective
shape description, the entire object usually has high consis-
tency in the depth map. Therefore, depth information can
be used to improve the consistency and smoothness of the
acquired saliency map. In this article, a saliency optimization
strategy with the depth constraint is formulated to attain more
consistent and accurate saliency results, where the depth con-
sistency relationship is introduced as an additional term in
the energy function. The energy function integrates the unary
data term, color smooth term, and depth consistency term. The
data term Eu controls the updating degree between the final
saliency map and initial saliency map. The color smooth term
Es constrains the spatially adjacent regions, which guarantees
that similar color appearance should be assigned to similar
saliency scores. The depth consistency term Ec imposes that
the adjacent regions with similar depth distribution should be
assigned to consistent saliency scores. The energy function is
defined as

E = Eu + Es + Ec =
∑

i

(
s∗

i − si
)2

+
∑

(i,j)∈�s

ωc
ij ·

(
s∗

i − s∗
j

)2 +
∑

(i,j)∈�s

ωd
ij ·

(
s∗

i − s∗
j

)2

(11)

where si = SDR(ri) is the saliency value of superpixel ri before
optimization, s∗

i is the optimized saliency value of superpixel
ri, �s represents the spatially adjacent set, and ω	

ij is the color
(	 = c) or depth (	 = d) similarity between two adjacent
superpixels, which is represented as

ω	
ij =

{
a	

ij, if
(
ri, rj

) ∈ �s

0, otherwise.
(12)

Then, the energy function defined in (11) can be rewritten
as a matrix form

E = Eu + Es + Ec = (
s∗ − s

)T · (
s∗ − s

)
+ s∗T · (Dc − Wc) · s∗ + s∗T · (Dd − Wd) · s∗ (13)

where s = [s1, s2, . . . , sN]T denotes the saliency vector of all
superpixels before optimization; s∗ = [s∗

1, s∗
2, . . . , s∗

N]T cor-
responds to the optimized saliency vector; Wc = [ωc

ij]N×N

and Wd = [ωd
ij]N×N are the color and depth affinity matri-

ces, respectively; Dc = diag(dc
1, dc

2, . . . , dc
N) and Dd =
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Fig. 3. Some visual examples of the RGB saliency and the corresponding
DTM saliency maps. The first column shows the RGB images and the cor-
responding depth maps. From the second column to the seventh column in
an image group, the first row is the different RGB saliency maps, and the
second row presents the corresponding updated saliency maps through the
proposed DTM.

diag(dd
1, dd

2, . . . , dd
N) represent the color and depth degree

matrices, respectively; and d	
i = ∑N

j=1 ω	
ij.

Setting the first-order derivative of the energy function with
respect to s∗ to be 0, we can obtain

∂E
∂s∗ = 2

(
s∗ − s

) + 2(Dc − Wc) · s∗ + 2(Dd − Wd) · s∗ = 0.

(14)

Combining the like terms, the solution is given by

s∗ = [I + (Dc − Wc) + (Dd − Wd)]
−1 · s (15)

where I is an identity matrix with size N × N.

IV. EXPERIMENTS

In this section, we evaluate the proposed DTM on the
NJUD dataset, STEREO dataset, and NLPR dataset. The qual-
itative and quantitative comparisons and ablation studies are
discussed.

A. Experimental Settings

In the experiments, three public RGBD saliency detection
datasets are used to evaluate the effectiveness of the proposed
transformation model. The STEREO dataset [51] is also an
image pair dataset that is distributed in indoor and outdoor
scenes, which contains 797 pairs of binocular images. The

TABLE I
QUANTITATIVE COMPARISONS ON THE NJUD DATASET. 	PG IS THE

PERCENTAGE GAIN BETWEEN THE RGB SALIENCY AND PROPOSED DTM

TABLE II
QUANTITATIVE COMPARISONS ON THE STEREO DATASET. 	PG IS THE

PERCENTAGE GAIN BETWEEN THE RGB SALIENCY AND PROPOSED DTM

corresponding estimated depth map and pixel-level ground
truth are provided. The NJUD dataset [41] contains 2000
stereo image pairs, which were collected from the Internet,
3-D movies, and photographs taken by stereo cameras. The
provided depth map in the NJUD dataset is estimated by the
optical-flow method, and the corresponding pixel-level ground
truth is given. The NLPR dataset [44] includes 1000 RGBD
images with pixel-level ground truth, where the depth maps
are captured by Microsoft Kinect. In this article, the number
of superpixels for each image is set to 200, and the number
of initial salient seeds in the RDSP component is set to 30.
The project is available on our website.1

For quantitative evaluation, four criteria, including the
Precision–Recall (PR) curve, F-measure, area under ROC
curve (AUC), and S-measure are used. Comparing the binary
saliency map with the ground truth, the precision and recall
scores can be calculated, where the precision represents the
percentage of salient pixels correctly allocated, and the recall
denotes the ratio of detected salient pixels with respect to the
salient pixels in the ground truth. Thus, the PR curve rep-
resents the tradeoff relationship between the precision and
recall scores. As a comprehensive performance measurement,

1https://rmcong.github.io/proj_RGBD_sal_DTM_tcyb.html
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Fig. 4. PR curves of different RGB saliency methods and corresponding DTM results on three RGBD saliency detection datasets, where the first row is
the results on the NJUD dataset, the second row shows the results on the STEREO dataset, and the third row shows the results on the NLPR dataset. In
each subfigure, the black line denotes the PR curve of the RGB saliency result, and the red line corresponds to the PR curve of the DTM result. (a) DSR
and corresponding DTM results. (b) RBD and corresponding DTM results. (c) DCLC and corresponding DTM results. (d) HDCT and corresponding DTM
results. (e) SMD and corresponding DTM results. (f) RCRR and corresponding DTM results.

the F-measure is defined as the weighted harmonic mean of
precision and recall [52]

Fβ =
(
1 + β2

)
Precision × Recall

β2 × Precision + Recall
(16)

where β2 = 0.3 for emphasizing the precision. The ROC curve
describes the relationship between the false positive rate and
true positive rate, and the area under the ROC curve is defined
as the AUC score, and the larger, the better. In addition, S-
measure [19] evaluates the structural similarity between the
saliency map and ground truth as

Sm = α × So + (1 − α) × Sr (17)

where α is set to 0.5 for assigning the equal contribution to
both region (Sr) and object (So) similarity.

B. Performance Evaluation of the Proposed Model

In our model, the existing RGB saliency detection model
is used to generate the RGB saliency baseline. We first use
six recent and representative RGB saliency detection meth-
ods to generate the baselines, including DSR [7], RBD [8],
DCLC [9], HDCT [10], SMD [11], and RCRR [12]. Then,
the RGB image, depth map, and RGB saliency map are,
respectively, embedded into the proposed model to produce
the corresponding improved RGBD saliency map. In this way,
we can obtain six groups of results on one dataset. Some visual
examples of the RGB saliency map and corresponding DTM
saliency map are shown in Fig. 3. The quantitative evaluations,
including PR curves, F-measure, AUC scores, and S-measure
are reported in Fig. 4 and Tables I–IV.

In Fig. 3, four visual groups, including different RGB
saliency maps and the corresponding DTM results are

TABLE III
QUANTITATIVE COMPARISONS ON THE NLPR DATASET. 	PG IS THE

PERCENTAGE GAIN BETWEEN THE RGB SALIENCY AND PROPOSED DTM

presented. In the first horse image, some backgrounds, such as
the distant trees, are misdetected by the RGB saliency methods
(i.e., RBD, SMD, and RCRR), whereas these regions are effec-
tively suppressed with the help of depth information. Through
the proposed DTM, backgrounds are removed successfully.
In the second image, in addition to the misdetected back-
grounds, the horseman cannot be completely highlighted by
all RGB saliency methods due to the low contrast against the
background in the color space. In contrast, these problems are
effectively addressed through the DTM. In the third image, the
legs of the rider are not highlighted as the body through the
RGB saliency detection methods, and the distant background
regions are wrongly retained. Going through the proposed
model, the rider is highlighted completely and consistently
with clear backgrounds. In the last image, the haystack is
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TABLE IV
QUANTITATIVE COMPARISONS OF DIFFERENT RGBD SALIENCY DETECTION METHODS ON THREE DATASETS

TABLE V
COMPARISONS OF THE AVERAGE RUNNING TIME (SECONDS PER IMAGE)

detected accurately and backgrounds are suppressed effec-
tively through the DTM method. In particular, when the RCRR
method completely fails in detecting the salient object, bene-
fiting from the introduction of multilevel saliency initialization
designed in our model, we still obtain superior detection
results. This also illustrates the robustness of our algorithm.

The PR curves of different RGB saliency methods and
corresponding DTM results on three RGBD saliency detec-
tion datasets are shown in Fig. 4. Compared with the RGB
saliency result (marked in black line) with the updated DTM
result (marked in red line), we can see that the PR curve
of DTM is much higher than the curve of the initial RGB
saliency method, which demonstrates superior performance
improvement of the proposed DTM. The numerical quanti-
tative measurements, including F-measure, AUC score, and
S-measure are listed in Tables I–III. On the NJUD dataset, the
F-measure of DTM reaches 0.7633, originating from 0.69;
the AUC score achieves 0.9220 from 0.8655, and S-measure
reaches 0.7170 from 0.6782. The maximum percentage gain
reaches 17.2% in terms of the F-measure compared with the
initial RGB saliency map, and average percentage gain also
reaches 15.1%. From the tables, we can see that the average
percentage gain of AUC reaches 6.85%, and the average per-
centage gain of S-measure achieves 10.01%. On the STEREO
dataset, the F-measure can be improved from 0.6974 to 0.7973
with the percentage gain of 14.3%, the AUC score is updated
from 0.9066 to 0.9490 with the percentage gain of 4.7%,
and S-measure is increased from 0.6674 to 0.7335 with the
percentage gain of 9.9%. On this dataset, the average percent-
age gains reach 10.8% in terms of the F-measure, 4.0% in
terms of the AUC score, and 6.9% in terms of the S-measure.
On the NLPR dataset, compared with the original saliency
baseline, the maximum percentage gain reaches 8.6% in terms
of the F-measure, 2.8% in terms of the AUC score, and 6.1%

in terms of the S-measure. In general, the more accurate the
RGB saliency baseline is, the better it is for the RGBD saliency
computation using our model. Therefore, in order to achieve
better performance in practical applications, we can select the
state-of-the-art method to generate a superior baseline.

In addition, the quantitative comparisons on three datasets
with seven RGBD saliency detection methods, including
SS [34], ACSD [36], WSC [37], CDCP [42], MBP [43],
LMH [44], and DF [45] are reported in Table IV, where
the proposed method is derived from the SMD method [11].
On these three datasets, the proposed method achieves the
highest F-measure and S-measure. Moreover, the proposed
method is superior to other methods in terms of the AUC
score on the STEREO and NLPR datasets. On the NJUD
dataset, the maximum percentage gain of F-measure achieves
26.7% compared with other methods, and the minimum per-
centage gain also reaches 2.3%. On the NLPR dataset, the
maximum and minimum percentage gains of the F-measure
reach 54.7% and 3.3%, respectively. On the STEREO dataset,
the percentage gain is more significant compared with the sec-
ond best method, that is, the gains of F-measure, AUC score,
and S-measure reach 8.2%, 5.3%, and 4.8%, respectively. We
also test the running time of all methods on a Quad Core
3.4-GHz PC with 16-GB RAM. The average running time is
reported in Table V. As can be seen, the proposed method
costs 2.22 s, on average, to process one image, where the
preprocessing (such as data loading, SLIC, graph construc-
tion, etc.) costs 74.72% running time, while multilevel RGBD
saliency initialization uses 6.61% running time, depth-guided
saliency refinement costs 3.73% running time, and saliency
optimization with depth constraints consumes 14.94% running
time. Compared with other RGBD saliency detection meth-
ods, our method ranks second, that is, it is only slower than
the ACSD method implemented by exe integration. All of
these visual examples and quantitative measures demonstrate
the effectiveness and computational efficiency of the proposed
DTM from RGB to RGBD saliency.

C. Module Analysis

The proposed DTM going from RGB to RGBD saliency is
composed of three modules. The multilevel RGBD saliency
initialization is proposed to integrate the global compactness
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TABLE VI
F-MEASURE OF DIFFERENT MODULES ON THE STEREO DATASET

and the local geodesic saliency cues, where the depth fea-
ture is used as a supplement to the color information. The
depth-guided saliency refinement is used to further highlight
the salient objects and suppress the background regions by
introducing the depth domain knowledge prior and RDSP.
The saliency optimization with depth constraints is designed
to improve the accuracy and consistency through an energy
function considering the depth consistency. We comprehen-
sively evaluate each module on the STEREO dataset, and the
F-measure is presented in Table VI.

The RGB saliency method (i.e., DSR) is used to produce
the initial saliency result with the F-measure of 0.6974. In
order to exploit the explicit depth feature and generate stable
saliency initialization, the multilevel RGBD saliency model is
designed by combining the global compactness saliency and
local geodesic saliency, and achieves the F-measure of 0.7050.
In addition to the explicit depth feature, the implicit depth
information, including the depth domain knowledge prior and
RDSP, are introduced in the depth-guided saliency refine-
ment to further highlight the salient objects and suppress the
background regions. Benefiting from the superior ability of
depth representation, the F-measure of depth-guided saliency
refinement model reaches 0.7697 with the percentage gain of
9.2% in comparison with the saliency initialization. Inspired
by the fact that the salient object in the depth map has high
consistency, the saliency optimization model with depth con-
straints is designed to attain more consistent and accurate
saliency results. After the optimization model in module 3, the
F-measure is further improved to 0.7973, with the percentage
gain of 3.6% when compared with the saliency refinement
model. In summary, the performance improvement of our
model primarily comes from these three effective depth-guided
modules.

D. Evaluation of Refined Depth Shape Prior

For the depth map, the implicit attribute will be benefi-
cial for the identification of the salient object, such as the
shape prior. In order to improve the independence of the
salient object and enhance the exploitation of depth shape,
an RDSP is proposed in this article. Different from the depth
shape prior (DSP), RDSP adds the color constraint to refine
the smoothness and consistency decisions, and refreshes the
propagation seeds selection to enhance the robustness. We
conduct some experiments on the STEREO dataset to eval-
uate the performance of RDSP. The PR curves and F-measure
are shown in Fig. 5, where the black line is the PR curve of
DSP, and the blue line denotes the PR curve of RDSP. As
can be seen, RDSP reaches a higher position than DSP in

Fig. 5. Quantitative comparisons between DSP and RDSP on the STEREO
dataset.

Fig. 6. F-measure of our method with different numbers of superpixels on
the STEREO dataset.

the PR curves, which demonstrates the performance superior-
ity of RDSP. In terms of the F-measure, the DSP descriptor
reaches 0.5677, and the RDSP descriptor reaches 0.6964 with
a percentage gain of 22.7% compared to DSP. In addition,
some visual comparisons are shown in Fig. 2. Compared with
the DSP result shown in the third column, the shape of the
salient object is effectively highlighted with a sharp boundary,
complete shape, and little interference. In the second image,
although the salient object has prominent properties in the
depth map, the DSP algorithm still fails to capture its shape
attribute accurately. In contrast, the RDSP method suppresses
the background and highlights the shape of the salient region
from the depth map. In addition, especially, for the low-depth
contrast image shown in the last row of Fig. 2, the DSP
descriptor cannot accurately describe the object shape; how-
ever, the RDSP algorithm effectively depicts the shape with
clean background noise.

E. Evaluation of Different Numbers of Superpixels

In this section, we discuss the influence of different numbers
of superpixels on the STEREO dataset, and the F-measures are
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Fig. 7. Visual comparisons with different qualities of the depth maps.
(a) RGB image. (b) Ground truth. (c) RGB saliency map by using the HDCT
method. (d) and (e) Original depth map from the dataset and the correspond-
ing DTM result. (f) and (g) Generated depth map by using the MegaDepth
method [53] and the corresponding DTM result.

Fig. 8. Visual examples of the proposed method applied to RGBD videos.
(a) Input RGB video sequences. (b) Input depth video sequences. (c) Ground
truth. (d) RGB video saliency results produced by the CVS method [25].
(e) RGBD video saliency results by using our transformation model.

shown in Fig. 6. As can be seen, when the number of super-
pixel is set to 200, our model achieves the best performance.
In fact, the consistent performance of our model with different
numbers of superpixels indicates that the proposed algorithm
is insensitive to the number of superpixels. Considering the
effectiveness and efficiency, the number of superpixels is set
to 200 in the experiments.

F. Discussion

We show some visual comparisons with different qualities
of the depth maps in Fig. 7. In this example, the quality of the
original depth map from the dataset is relatively poor, while
the generated depth map using the MegaDepth method [53] is
more homogeneous and accurate. With these two depth maps
as an input, the proposed model can still optimize the RGB
saliency result and suppress the backgrounds. Moreover, our
model with a high-quality depth map as input yields better
results [see Fig. 7(g)], as the background regions are sup-
pressed more effectively. It is worth mentioning at this point
that we introduce the depth confidence measure to control the
volume of the depth information, which reduces the negative
influence of the poor depth map to some extent. All of these
examples demonstrate the robustness of the proposed model.

In addition, we evaluate the performance of our model in
dynamic scenarios. Some visual examples of the proposed
method that applied to RGBD videos [54] are shown in Fig. 8,
where the RGB video saliency detection method denoted as
CVS [25] is used to generate the input baseline. In the toy car

sequences, some backgrounds (e.g., TV) are misdetected as the
salient regions by the CVS method. Through our model, these
regions are suppressed to a certain extent, and the toy car is
also further highlighted. Similarly, the background regions on
the left in the walking sequences are effectively suppressed
by our method. In this experiment, we just made a simple
attempt in the video by using our model. In fact, the motion
constraint and spatiotemporal information should be consid-
ered in the transformation model for the RGBD video to
further improve saliency performance. This is a valuable and
promising research direction in the future.

V. CONCLUSION

Different from the existing RGBD saliency methods focus-
ing on designing a straightforward and comprehensive model,
in this article, we proposed a DTM from RGB to RGBD
saliency, which pays more attention to capture the explicit and
implicit information from the depth map. First, the explicit
depth feature is used to generate multilevel RGBD saliency
initialization, which combines the global compactness saliency
and local geodesic saliency cues. Then, the implicit attributes
of the depth map, including depth domain knowledge prior
and RDSP are captured to refine the saliency result. Finally,
inspired by the depth consistency in the interior of the
object, a saliency optimization strategy with depth constraint
is designed to further improve the consistency and accuracy,
which introduces the depth smoothness relationship as an addi-
tional term in the energy optimization function. The proposed
model can effectively exploit any existing RGB saliency model
to work well in RGBD saliency scenarios. The comprehen-
sive comparisons and ablation studies on three RGBD saliency
detection datasets have demonstrated the effectiveness of the
proposed method both qualitatively and quantitatively.

In this article, we focus on designing an unsupervised
framework that transforms the RGB saliency to RGBD
saliency with the help of depth constraints. The past decade
has witnessed the vigorous development and qualitative leap
in learning-based saliency detection methods. Thus, depict-
ing the handcrafted features designed in this article using the
learning methods (e.g., deep learning [17], [18], [48], [49];
extreme learning [55]–[59]; and zero-shot learning [60]) is a
very interesting and promising research topic in the future.
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