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Abstract

Weakly-Supervised Object Detection (WSOD) aims at train-
ing a model with limited and coarse annotations for precisely
locating the regions of objects. Existing works solve the W-
SOD problem by using a two-stage framework, i.e., generat-
ing candidate bounding boxes with weak supervision infor-
mation and then refining them by directly employing super-
vised object detection models. However, most of such works
focus mainly on the performance-boosting of the first stage,
while ignoring the better usage of generated candidate bound-
ing boxes. To address this issue, we propose a new two-stage
framework for WSOD, named GradingNet, which can make
good use of the generated candidate bounding boxes. Specif-
ically, the proposed GradingNet consists of two modules:
Boxes Grading Module (BGM) and Informative Boosting
Module (IBM). BGM generates proposals of the bounding
boxes by using standard one-stage weakly-supervised meth-
ods, then utilizes the Inclusion Principle to pick out highly-
reliable boxes and evaluate the grade of each box. With the
above boxes and their grade information, an effective anchor
generator and a grade-aware loss are carefully designed to
train the IBM. Taking the advantages of the grade informa-
tion, our GradingNet achieves state-of-the-art performance
on COCO, VOC 2007, and VOC 2012 benchmarks.

Introduction

Object detection aims at locating and recognizing object-
s of interest in given images of various scenes. For a long
period of time, a number of methods were proposed to
solve the challenges of object detection (Lin et al. 2017;
Dai et al. 2016; Wang et al. 2019). Although remarkable
progress has been achieved, it is time-consuming and labor-
intensive to annotate accurate object bounding boxes for a
dataset. Therefore, weakly-supervised object detection (W-
SOD), which only uses image-level labels for training, is
considered a promising solution to the problem.
Traditionally, most of the previous methods (Bilen, Ped-
ersoli, and Tuytelaars 2015; Song et al. 2014; Li et al. 2016;
Hoffman et al. 2015) attempt to address the WSOD problem
by employing Multiple Instance Learning (MIL) network. In
particular, they first decompose images into object proposals
and then use MIL to iteratively perform proposal selection
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and classifier estimation. Though many exciting results have
been achieved, they are still far from comparable to fully su-
pervised methods (Girshick 2015; Ren et al. 2015; Redmon
et al. 2016). This is mainly because fully supervised meth-
ods make use of the strong learning ability of CNN to fit the
datasets with accurate region-level annotations. Therefore,
multiple instance learning networks can only solve part of
the WSOD problem, and some methods treat it as a sub-task
of WSOD and then carry out a series of follow-up process-
ing to pursue higher performance.

Recently, some works (Tang et al. 2017, 2018; Yang, Li,
and Dou 2019) solve the WSOD problem with a two-stage
framework, which uses the top-ranked proposal produced by
the weakly-supervised method to train a supervised detector.
Since the top-ranked proposal only finds one ground-truth
for each category, it will lose many informative proposals in
complex visual scenes. To handle this problem, W2F (Zhang
et al. 2018) reports a PGE algorithm to better find the pseu-
do ground-truth. However, since some weakly-supervised
detectors are unstable, the generated proposals have some
randomness. The mechanical processing method, like PGE,
sometimes results in worse effects.

In addition to the above shortcomings, these methods al-
so have a common problem, i.e., they focus only on the
performance-boosting of the first stage (weakly-supervised)
and assume that the pseudo ground-truth produced by it is
accurate in the second stage. However, due to the inherent
shortcomings of the weakly-supervised detector, the detect-
ed proposals are generally incomplete and inaccurate. Us-
ing these proposals as pseudo ground-truth to train a fully-
supervised detector in the second stage (fully-supervised)
will lead to two problems. Firstly, some of the anchors gen-
erated by using the pseudo ground-truth will be misclassi-
fied, which will greatly mislead the model. Secondly, lots of
pseudo ground-truths can only cover a small and discrimina-
tive part of objects, while some can cover the whole object
regions.

To address the above-mentioned problems, we propose a
new solution for the WSOD problem, which divides it in-
to a preliminary WSOD problem and a mixed problem of
incomplete and inaccurate supervision (Zhou 2018). Boxes
Grading Module (BGM) and Informative Boosting Module
(IBM) are carefully designed to solve the two-stage prob-
lem separately. BGM evaluates the quality of each propos-



al to make Graded-labels. Specifically, we use the stabili-
ty of the model to find stable boxes, and then utilize the
Inclusion Principle to find out high-quality proposals and
make them into Graded-Labels. IBM trains a detector by us-
ing these Graded-Labels. Different from the traditional two-
stage method, we do not see the second stage as a fully-
supervised process. Instead, we regard it as an incomplete
supervised problem (the bounding boxes in Graded-Labels
are incomplete) and an inaccurate supervision problem (the
coordinates of bounding boxes are inaccurate). To tackle the
first problem, IBM generates anchors in a predictive way.
To solve the second one, a grade-aware loss is adopted by
IBM. Besides, we also propose Area-balanced Sampling to
control the proportion of positive and negative samples.

In brief, there are four main contributions in this paper:
1) A new two-stage framework is proposed for solving the
WSOD problem, which divides the WSOD problem into a
preliminary WSOD problem and a mixed problem of in-
complete and inaccurate supervisions. 2) A Boxes Grading
Module is proposed to grade the generated proposals, which
provides more reliable bounding boxes for the following su-
pervised stage. 3) An Informative Boosting Module is pro-
posed for using the Graded-labels produced by BGM to train
a supervised detector, which further improves detection per-
formance. 4) The proposed method achieves state-of-the-art
performance on COCO, VOC 07, and VOC 12 benchmarks.

Related Work

Weakly Supervised Learning: Common weakly super-
vised learning methods are Multiple Instance Learning
(MIL) and Latent Variable Learning (LVL). MIL splits the
image into positive and negative parts, each image is consid-
ered as a bag of candidate object instances. Most existing W-
SOD methods (Gokberk Cinbis, Verbeek, and Schmid 2014;
Cinbis, Verbeek, and Schmid 2017; Wang et al. 2015; Hoft-
man et al. 2015) treat the problem as a MIL problem. How-
ever, positive object instances sometimes focus on the most
discriminative parts of an object instead of the whole region,
which causes the inaccurate object localization of detectors.
In addition, since the underlying MIL optimization is non-
convex, it is sensitive to positive instance initialization and
tends to get trapped in local optima.

Some LVL algorithms are also used to solve the W-
SOD problem. Clustering methods (Song et al. 2014; Tang
et al. 2018) recognize latent objects by finding the most dis-
criminative clusters. Latent SVM (Yu and Joachims 2009;
Ye et al. 2017) optimizes the learned object location-
s by Expectation-Maximization algorithm. Entropy based
methods (Miller et al. 2012; Bouchacourt, Nowozin, and
Pawan Kumar 2015; Wan et al. 2018) use entropy in LVL
to measure the randomness of object localization during
the learning process. Unfortunately, these methods often be-
come stuck in a poor local minimum just like MIL.
Two-stage WSOD approaches: Recently, some WSOD
methods (Zhang et al. 2018; Tang et al. 2017; Wei et al.
2018; Tang et al. 2018; Yang, Li, and Dou 2019; Bilen
and Vedaldi 2016; Kantorov et al. 2016) follow a two-stage
procedure which uses the strong regression ability of fully-
supervised detector to guide weakly-supervised detection. In
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the first stage, the MIL network is used, which uses CNN as
detectors to activate regions of interest on the feature maps
and localizes objects by leveraging spatial distributions and
informative patterns captured in the convolutional layers. In
the second stage, a fully supervised detector is trained to fur-
ther refine object location by using the selected boxes of the
first phase as supervision. The main functionality of the sec-
ond stage is to regress the object locations more precisely.
In this paper, we design Boxes Grading Module (BGM) to
process the information produced by the first stage and help
with better training in the second stage.

Fully-supervised detector used in WSOD: Object detec-
tion has been widely studied in the last few decades, many
methods have been proposed, such as the Fast R-CNN (Gir-
shick 2015), Faster R-CNN (Ren et al. 2015) and other meth-
ods (Lin et al. 2017; Dai et al. 2016; Wang et al. 2019)
based on them. Specifically, Faster R-CNN improved Fast
R-CNN and has achieved breakthrough in speed. Though
great progress has been achieved, fully-supervised method-
s still require accurately bounding-box annotations, which
are expensive and time-consuming. In this paper, we de-
sign Informative Boosting Module (IBM) based on fully-
supervised methods to train detector and use Graded-Labels
produced by BGM to replace bounding-box annotations.

Method

The overview of GradingNet is illustrated in Figure 1, which
include two main modules: Boxes Grading Module (BG-
M) and Informative Boosting Module (IBM). The BGM u-
tilizes a novel inclusion principle to select high-quality re-
gions from object proposals and categorizes them into vari-
ous Graded-Labels. Then, IBM makes use of those Graded-
Labels to train a more accurate detector.

Inclusion Principle

For a long period of time, a quantity of WSOD works is pro-
posed to solve the challenges of locating the complete objec-
t. Although remarkable progress has been achieved, most of
the methods are only able to locate the discriminative parts
of objects. To tackle this problem, we first propose a simple
Inclusion Principle.

Overview: The idea of the Inclusion Principle comes from
the relationship of object parts, i.e., the whole object con-
tains part of object, which contains the most discriminative
part. For example, the human body contains upper part of
human, and the upper part of human contains head. When
the detector detects many parts within an object, we can use
this principle to judge which part is the most complete.
Details: Inclusion is an abstract conception and we use the
following Eq.(1) to quantify it. For boxes A and B, we de-
fine Intersection over Single (IoS) to measure the degree of

inclusion,
ANB

IoS(A,B) = (1)

Under this definition, if ToS (A, B) > Tr,s, Tios is the
overlap threshold, we determine that A include B.

Based on the principle, if we locate the most discrimina-
tive part of object, the whole object will be found. Therefore,
we first propose a method to find the discriminative part.
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Figure 1: Overview of the proposed GradingNet, WSOD modules can adopt any existing one-stage weakly-supervised methods.

Finding the Stable Boxes

A well-trained detector can localize discriminative parts in
an image, even though the image is perturbed by a batch
of noises. According to this characteristic, the discrimina-
tive part is named stable box and we expect to utilize this
kind of stability of a detector to find them. Hence, we first
augment the dataset with our carefully designed noises, then
feed them into a pre-trained weakly supervised detector and
take the predicted boxes as candidates. Specifically, for each
image I' € D,i = 1,2,...,|D| in the dataset D, we gen-
erate two kinds of additive noises, d; and J5. d; is generat-
ed by randomly changing 0.5% of pixels while the other is
changing 1% of pixels. We add these noises on the original
image to get two perturbed images, i.e., I; = I' + 6] and
Ii = I' + 6. The original images together with the noisy
images from the augmented dataset D :

Dy =DUDs, UDs,
Ds, = {I}, =I' +6ili = 1,2,...,|D|}
Ds, ={I3, = I' + 05]i = 1,2,...,| D[}

@

A weakly supervised detector takes the images in D as
the input and outputs predicted box proposals. The design of
such a detector is beyond the scope of this paper, therefore,
we apply an existing method (e.g., OICR (Tang et al. 2017))
to execute the above process. For each image [ in D4, a
collection P, of the box candidates with confidence scores
is generated:

Py ={, s )} € RYs' €Ri=1,..,|P]} (3
where bi represents a box candidate, and s?F is the corre-
sponding confidence score within [0, 1]. To coarsely puri-
fy the predictions, we perform NMS with a loose threshold
Tms1 oneach Py.

Then, we use the stability of weakly-supervised method
to find stable boxes. Considering the collections P, Ps, and
Ps, on the same image in D, Ds, and Ds,:

Ps, = {bf_;l|bf_Sl €ERYi=1,..|P}
Ps, = {bj, b5, € R*,i=1,...,|P|}

“
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For a certain box A in P, we find the boxes B and C
closest to it from Ps, and Pj, according to the IoU. And the
stability (ST') of box A can be calculated as:

STx = MIoU (A, B) + Ay IoU (A, C) (5)

where A; and A\ are parameters that weight the importance
of B and C, respectively. The process is repeated until the
ST of all boxes in P, P5, and Pj, are calculated and in
which NMS operates on it, only the boxes whose ST larger
than a pre-defined threshold T, constitutes the stable boxes
collection Pq;. The collection P,; which consists of all boxes
except stable boxes is confirmed in the meantime.

Py = {bzst|b29t € R4vi =1,.., |P|}

Por = {bl, bl € RYi = 1,...|P|} ©

Boxes Grading Module

The BGM relying on the Inclusion Principle use stable boxes
to select high-quality regions from object proposals. Given
a set of proposals P = {p1,....pn } in image X, the corre-
sponding confidence scores output by the one-stage weakly-
supervised detector is unreliable. Therefore, we first initial-
ize a set of scores S = {s1,...,s } and a set of grades G =
{g1,----gn }. The scores are used as a standard to identify a
high-quality subset P, of boxes. And the grades further e-
valuate the quality of selected boxes.

We initialize the sets of S and G according to the Inclu-
sion Principle. Each box is represented as a node in the ori-
ented graph (Figure 2), and two nodes are defined as inclu-
sion if the IoS (Eq.(1)) of their corresponding boxes is be-
low a threshold (solid line in Figure 2). The BGM provides a
method to find the high-quality region (node 1 in Figure 2):
To encourage selecting regions containing complete object,
we define a way to update the scores of parent nodes (nodes
1 and 2 in Figure 2) using their children nodes.

Scorea= Scores+ScoregloS (A, B) 7

Based on the Inclusion Principle, if regions contain more
complete object boxes, their corresponding nodes will have
more children nodes. For this reason, the score S of a more
complete object box is updated more times and gets a larger
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Figure 2: All the detected proposals (left) and oriented graph
representation of them (right). Our goal is to select the green
boxes and we achieve this by analyzing the inclusion rela-
tionship between proposals.

value. And its grade G is directly assigned to a higher value
than its children node.

Besides, to suppress selecting regions containing many
objects. The score of their corresponding parent node can
only be updated by a single child node with the same grade
G. If a parent node has many children nodes with G = i, its
score is updated only once. However, if it also has child n-
ode with G = j (i # j), its score can be updated normally.
The BGM algorithm is summarized in Algorithm 1.

We obtain the boxes P, required by Graded-Labels and
the grade G, of it. Although G can evaluate the quality
of P, we still require a better parameter to avoid the influ-
ence of different grade distribution on different category. So
we count the total number m of boxes in each category (all
images) and use the parameter m and G (each box) with cat-
egory = n to calculate the reliability (Rel) using Eq.(8). The
parameter Rel replace G, are included in Graded-Labels to
measure the quality of a box.

GA m*GA
la= = 8
Rela Guvs S G @
cls=n

Informative Boosting Module

IBM trains a detector by making use of CNN to fit the
Graded-Labels and further improve detection performance.
All components will be detailed in the following.

Predicted Anchoring: Since the bounding boxes in label-
s are incomplete, if we generate anchors on the whole fea-
ture map, some of the anchors will be misclassified. Inspired
by GA-RPN (Wang et al. 2019), we predict the position
of the anchor’s center point to generate anchors around the
Graded-Labels. Specifically, we perform a 1 x 1 convolu-
tion on the feature map, dividing the output into two signal-
channel maps. The element-wise sigmoid function is applied
on those two maps to get two probability maps FC1 and FC2.
Each value in FC1 (FC2) illustrates how likely this position
is a center point of a positive (negative) anchor.

To train the center point probability matrix of posi-
tive/negative anchors separately, we use two binary label
maps where 1 represents a valid location to place the center
point of anchor and O represents other regions. We first map
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Algorithm 1 Boxes Grading Module

Input: Image X in Datasets D ; Stable boxes collection
P,;; Other boxes collection P,;; Thims2; Tros
Output: Boxes P,
10 S ¢ {0.2}V; 8, < {0.1}V; 8 =S, U Sy
2: Gst — {1} Got — {O}N, G= Gst U Got
30 k0041
4: while k # 2 do
5 forAEPotandBePstUPOtdO
6: if Gg =iand I0S(A, B) > Tj,s then
7:
8

G+ Ga+i+1
: S <S4 + Compute .S using Eq.(7)
9: if k

> 0 then
10: k<« k-1
11: end if
12: else
13: i 1+1
14: k<—k+1
15: end if
16: end for

17: end while
18: Pg = nmS(Pst U Pot’ S, TnmsQ)

the bounding box (x4, y4, Wy, hge) Which represents a box
with wy width, hg and (x4, y4) as the center point to the cor-
responding feature map scale, and obtain (m;, yg, wg, h' )
For positive anchor, we generate center box ($;, yg, K w
Kh}), the center point generated in it. For negative anchors,
we generate outbox]1 (xg, yg, (K + 1)w’g, (K + 1)h;) and
outbox?2 (xg, yg, ng, Lh ) the center point generated in
the region which included by outbox1 but excluded by out-
box2.

After the center point is determined, we generate 3 s-
cales with box areas of 128/256/512 squares pixels, and 3
aspect ratios of 1:1, 1:2, and 2:1 in each point of the posi-
tive/negative center points region. For training, in the region
of positive/negative center points, each point chooses one
proposal which has the largest/smallest IoU with Graded-
Labels in 9 proposals. For testing, we choose all the 9 pro-
posals as anchors. The whole process is shown in Figure 3.
Area-balanced Sampling: For the problem of unbalanced
positive and negative samples in Graded-Labels, we propose
a novel solution. Because of the Predicted Anchoring, the
number of positive/negative anchors is directly determined
by the area of center points region. We can control the sam-
ple proportion by dynamically adjusting parameters K and
L mentioned in Predicted Anchoring. Since the bounding
boxes with higher Rel (Eq.(8)) are more accurate and the
anchor generated near it has higher quality, we set K = Rel
. According to experience, the ratio of positive and negative
samples is 1:3, and we can get the Eq.(9),

K2 1

(K +1)*-L2 3
then parameter L is determined by the following Eq.(10)

©))

L=1/(K+1)?-3K? (10)
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Figure 3: Overview of the predicted anchoring. The center
point of positive anchor is included by the center box and
negative anchor is included by the outbox1 but excluded by
the outbox2. We generate 9 size anchors on all the center
point and choose 1 proposal which has the largest/smallest
IoU with Graded-Labels as positive/negative sample.

Grade Loss: Our IBM is trained with the following multi-
task loss:

Lmulti = )\chls + ArL?"eg + )\pra (1 1)

where L.;s is the commonly used classification loss in de-
tection tasks (Ren et al. 2015), L, is the regression loss
including grade information and L, is an additional loss
for the predicted anchor localization.

For L;¢q, since using the bounding box with low Rel to
train a model will lead to inaccurate location. A proper way
is to link regression loss with Rel to adjust the proportion of
loss provided by labels with different Rel, as follows:

Lreg = Z Reliprr (tz’ ) t;k) (12)

where ¢; is a vector representing the 4 coordinates of the
predicted bounding box, and ¢} is that of the box in Graded-
Labels associated with a positive anchor. L, represents s-
mooth L loss. Such loss makes the box with lower reliabil-
ity have less impact on the regression loss.

For L,,,, we use the sum of two log losses over two classes
(positive vs Non-positive samples, negative vs Non-negative
samples).

Lpa = ZLlog (Pi ’ Pi*) + ZLIUQ (Nj ’ Njik) (13)
i J

Experiments
Datasets and Evaluation Metrics

The training datasets we use in all experiments are three
challenging benchmarks in object detection: PASCAL VOC
2007 (5011 images for training, 4952 images for testing),
PASCAL VOC 2012 (Everingham et al. 2015) (11540 im-
ages for training, 10991 images for testing) datasets which
are widely used as benchmarks for WSOD. And MS COCO
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2014 (Lin et al. 2014) dataset (about 80K images for train-
ing, 40K images for validation) which is the popular dataset
used for supervised object detection but rarely used in W-
SOD. In all experiments, we only use image-level labels.

For evaluation on VOC 2007 and 2012, we use two kinds
of measurements: 1) Average Precision (AP) and the mean
of AP (mAP) on the test set. 2) CorLoc on the trainval set.
All metrics are based on the PASCAL criterion. For evalua-
tion on MS COCO, we use two main metrics AP and APsq
which are the standard MS COCO criterion.

Implementation Details

All the experiments are implemented based on PyTorch on 4
NVIDIA GeForce GTX 2080Ti. All the settings of our four
baselines (OICR, PCL, MELM and C-MIL) are kept identi-
cal to (Tang et al. 2017; Tang et al. 2020; Wan et al. 2018,
2019) For BGM, both A1 and A5 are set to 0.5. The threshold
Tms1 and Ty for NMS are set to 0.8 and 0.7 respectively.
The thresholds T;,,,s2 and 17,5 for NMS is set to 0.7 and
0.6 respectively. For IBM, VGG16 model is adopted as our
backbone network. We set A. and A, to 1 and A, to 0.5. The
batch size is set to 16, initialize the learning rate as 1 x 1073,
and then decrease it to 1 x 107% and 1 x 10~° at 3 epochs
and 6 epochs, eventually stop at 7 epochs.

Ablation Studies

We conduct some ablation experiments on the COCO 2014
and VOC 2007 datasets, which include the influence of each
part in GradingNet and the individual influence of IBM.
Influence of the GradingNet: We present the GradingNet
as a combination of Head, Neck and Body part. Each part
contains some alternative approaches. The experimental re-
sults are shown in Table 1. We can observe that even using
the simple Neck and Body (TS and Fast R-CNN), the result-
s are improved compared to only use that original weakly-
supervised method, i.e., 0.6% AP improvement in OICR
and 0.9% AP improvement in PCL, 0.5% APsq improve-
ment in OICR and 0.3% AP, improvement in PCL. We at-
tribute this to the selective ability of the Neck and regression
ability of the Body.

1) The choice of Neck: When we use the same Body (Fast
R-CNN, Faster R-CNN or IBM), our BGM performs better
than TS and PGE in most evaluation metrics. For example,
we use OICR as Head and Fast R-CNN as Body, combining
with the BGM designed by us, the framework achieves 8.3%
AP, which is 0.8% higher than the framework that uses TS
as Neck and 0.6% higher than the framework that uses PGE
as Neck respectively. We can observe that only our BGM has
significant improvement in all weakly-supervised methods,
while TS and PGE perform poorly in MELM. This proves
that the BGM which use the instability of weakly-supervised
detector is more general.

2) The choice of Body: Similarly, when we use the same
Neck (TS, PGE or BGM), our IBM also performs better than
Fast R-CNN and Faster R-CNN in most evaluation metrics.
This is mainly because our IBM has a better fit ability to the
Graded-Labels.

Influence of the IBM: To study the influence of IBM, we
compute the proposal Recall at different IoU thresholds with



Head Neck Body Metric
OICR PCL [ TS PGE BGM (ours) | Fast Faster IBM(ours) | AP APsgz AP;; APs APy, AP
v 6.9 16.5 6.1 3.1 7.8 129
v v v 7.5 17.0 6.3 3.2 8.4 13.1
v v v 7.3 17.1 5.8 3.1 8.6 13.5
v v v 7.8 18.0 7.0 3.1 8.9 14.1
v v v 7.7 18.5 7.3 3.0 9.0 14.7
v v v 7.2 17.4 7.0 3.1 8.5 13.6
v v v 7.9 18.6 8.5 3.0 9.2 15.3
v v v 8.3 18.9 8.1 33 94 16.0
v v v 8.0 19.0 8.2 3.2 9.1 154
v v v 8.7 201 8.5 33 9.8 16.9
+1.8 +3.6 +24 +0.2 +2.0 +4.0
v 8.3 19.1 7.6 33 9.5 15.3
v v v 9.2 19.4 8.1 33 102 16.2
v v v 8.9 19.1 8.0 34 10.5  16.0
v v v 9.5 19.3 8.2 3.2 10.5 16.8
v v v 9.4 18.6 8.3 3.1 10.7 158
v v v 9.3 18.9 8.3 3.2 104 16.5
v v v 9.5 19.0 8.1 34 109 16.5
v v v 10.1  22.6 8.2 3.6 106 17.0
v v v 99 214 7.8 3.5 104 163
v v v 10.8 229 9.0 3.5 11.1 173
+2.5 +38 +14 +02 +1.6 +2.0

Table 1: Ablation study on COCO 2014 validation set. TS represents only using top-scoring proposals. PGE is proposed in
W2F (Zhang et al. 2018) and we reproduce it according to the paper. Fast/Faster represent Fast/Faster R-CNN.

0.8

0.6

Recall
Recall

Recall

K=1,L=1.5

0.4 | —&— K=0.5L=1.2 0.4 - —#— K=05,L=1.2
@ K=1Ll=15 @ K=1Ll=15
0.2 | @ K=11=173 i - K=11=173
@~ K=Rel,L=Eq.{10} . @~ K=Rel,L=Eq.{10}
Baseline (RPN) Baseline (RPN)
0.0 : 3 . 0.0 : 3
0.5 0.6 0.7 0.8 09 1.0 0.5 0.6 0.7
loU

(a) 300 proposals

loU
(b) 1000 proposals

K=1,L=1.73
62 K=Rel,L=Eq.(10)
Baseline (RPN)
. & . i . ;
08 0.9 1.0 0.5 0.6 0.7 08 0.9 1.0
loU

(c) 2000 proposals

Figure 4: ToU-Recall curve for different number of proposal (300, 1000 and 2000) methods on the VOC 2007 test set. Both

IBM and RPN are trained by Graded-Labels.

ground-truth and draw the IoU-Recall curve. As shown in
Figure 4, our method obtains higher Recall than the RPN
(Ren et al. 2015). We also report the influence of different
parameters K and L in IBM on Recall. It shows that the
values of K and L which strictly follow our Method section
are optimal. We attribute this to the Predicted Anchoring and
Area-balanced Sampling in IBM.

Comparison with State-of-the-Art

PASCAL VOC: For fairly compare with most state of the
art WSOD works, we evaluate our method on the PASCAL
VOC datasets. Table 2 shows the mAP on VOC 07 test set,
we only show the AP of 10 object categories, but mAP is cal-
culated based on all the 20 object categories. We present the
performance of our GradingNet on the four baselines. Added
the GradingNet, OICR, PCL, MELM and C-MIL achieve
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48.1%, 49.4%, 52.5% and 54.3% mAP, respectively, which
are significantly higher than the baselines and the base-
lines re-trained by fully-supervised detector. In addition, Our
GradingNet-C-MIL results (54.3% mAP) surpass all the pre-
vious methods. Table 3 shows the Corloc on VOC 07 trainval
set. Similarly, added the GradingNet, OICR, PCL, MELM
and C-MIL achieve 68.6%, 69.1%, 63.2% and 72.1% Cor-
loc, respectively, which are also higher than the baselines
and the baselines re-trained by fully-supervised detector.
GradingNet-C-MIL achieves the highest result (72.1%) and
surpass all the previous methods.

Table 3 also shows our performance in terms of mAP and
Corloc on the VOC 12 test and trainval sets. The results also
show the huge improvement between our methods and base-
lines. And our GradingNet-C-MIL also achieves the highest
mAP (50.5%) and the second highest CorLoc (71.9%).



Method aero  boat bottle  car chair dog horse mbike person plant [ mAP

OICR (Tang et al. 2017) 585 169 174 60.8 82 313 519 648 136 2301 | 420
PCL (Tang et al. 2020) 571 169 188 637 17.0 332 544 683 16.8 257 | 458
MELM (Wan et al. 2018) 556 29.1 164 681 250 532 496  68.6 2.0 254 | 473
C-MIL (Wan et al. 2019) 625 321 198 66.1 200 535 574 689 8.4 24.6 | 50.5
WSOD?2 (Zeng et al. 2019) 651 392 243 662 298 60.1 712 707 219 28.1 | 53.6
C-MIDN (Gao et al. 2019) 533 261 203 699 287 646 580 712 200 275 | 52.6
OIM (Lin et al. 2020) 556 279 21.1 683 213 545 565 70.1 12.5 25.0 | 50.1

SLV (Chen et al. 2020) 656 37.1 246 703 308 614 653 68.4 124 299 | 535
OICR+FRCNN (Tangetal. 2017) | 655 21.6 221 6835 5.7 303 647 66.1 130 256 | 470
PCL+FRCNN (Tang et al. 2020) 632 226 273 691 120 373 633 63.9 15.8 23.6 | 488
C-MIL+FRCNN (Wan et al. 2019) | 61.8 289 189 69.6 185 669 659  65.7 13.8 229 | 531
C-MIDN+FRCNN (Gao et al. 2019) | 54.1 264 222 689 252 703 663 67.5 216 244 | 53.6
OIM+FRCNN (Lin et al. 2020) 534 260 277 697 214 637 637 67.4 109 253 | 526
SLV+FRCNN (Chen et al. 2020) 62.1 345 256 674 242 716 720 672 12.1 24.6 | 539
GradingNet-OICR (ours) 632 234 232 683 106 413 60.1 68.2 202 229 | 481
GradingNet-PCL (ours) 603 252 21.1 646 150 540 588 65.4 227 201 | 494
GradingNet-MELM (ours) 573 316 31.0 718 290 656 71.0 687 292 241 | 525
GradingNet-C-MIL (ours) 618 392 316 750 339 619 713 64.4 282 332 | 543

Table 2: Average precision (%) on the PASCAL VOC 2007 test set.

VOC 07 VOC 12
Method CorLoc(%) | mAP | CorLoc(%)
OICR (Tang et al. 2017) 61.2 38.2 63.5
PCL (Tang et al. 2020) 63.0 41.6 65.0
MELM (Wan et al. 2018) 61.4 424 -
C-MIL (Wan et al. 2019) 65.0 46.7 67.4
WSOD2 (Zeng et al. 2019) 69.5 472 71.9
C-MIDN (Gao et al. 2019) 68.7 50.2 71.2
OIM (Lin et al. 2020) 67.2 453 67.1
SLV (Chen et al. 2020) 71.0 49.2 69.2
OICR+FRCNN (Tang et al. 2017) 64.3 4235 65.6
PCL+FRCNN (Tang et al. 2020) 66.6 442 68.0
C-MIDN+FRCNN (Gao et al. 2019) 71.9 50.3 73.3
OIM+FRCNN (Lin et al. 2020) 68.8 46.4 69.5
GradingNet-OICR (ours) 68.6 443 68.9
GradingNet-PCL (ours) 69.1 47.0 69.3
GradingNet-MELM (ours) 63.2 48.6 62.8
GradingNet-C-MIL (ours) 72.1 50.5 71.9

Table 3: CorLoc (%) on the PASCAL VOC 2007 trainval set,
mAP (%) and CorLoc (%) on the PASCAL VOC 2012 test
and trainval sets.

Method AP | AP5

PCL (Tang et al. 2020) 8.5 194
C-MIDN (Gao et al. 2019) 96 | 214
WSOD2 (Zeng et al. 2019) 10.8 | 22.7
OICR+FRCNN (Tang et al. 2017) | 7.7 17.4
PCL+FRCNN (Tang et al. 2020) 9.2 19.6
GradingNet-OICR (ours) 8.7 20.1
GradingNet-PCL (ours) 10.8 | 229
GradingNet-MELM (ours) 11.0 | 22.6
GradingNet-C-MIL (ours) 11.6 | 25.0

Table 4: AP and APs5q on the COCO 2014 validation set.

MS COCO: We also report the results on COCO 2014 val-
idation set in Table 4. It is worth mentioning that a few
methods report results on COCO dataset. Nevertheless, we
present the performance of our GradingNet on four base-
lines. All the four methods we present achieve high perfor-
mance and our GradingNet-C-MIL achieve 11.6% AP and
25.0% APsg, which create a new state-of-the-art.
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Figure 5: Example results by GradingNet-C-MIL and C-
MIL. Green/purple boxes indicate correct/failure cases by
GradingNet-C-MIL, and red ones indicate cases by C-MIL.

Qualitative Results and Discussion

Figure 5 exhibits some cases of GradingNet. We can obverse
that GradingNet can well contain the whole object, while
there remains a challenge to solve the detection problem in
close or overlapping objects. It is worth mentioning that for
the “’person” class, our detection performance is better than
most weakly-supervised object detectors. The reason is that
the Inclusion Principle we proposed caters to the structure of
the human body. In addition, to the best of our knowledge,
our GradingNet is a rare framework that focuses on the bet-
ter usage of candidate bounding boxes generated by standard
one-stage weakly-supervised methods. This field that tradi-
tional WSOD works ignore is worth studying.

Conclusion

In this paper, we propose a novel framework GradingNet,
which regards the classical WSOD problem as a prelimi-
nary WSOD problem and a mixed problem of incomplete
and inaccurate supervision. We deal with the former prob-
lem through the Boxes Grading Module (BGM) and tackle
the latter problem through the Informative Boosting Module
(IBM). The proposed GradingNet achieves state-of-the-art
performance on COCO, VOC 07 and VOC 12 benchmarks.
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