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Abstract— Traditional feature-based image stitching technolo-
gies rely heavily on feature detection quality, often failing to stitch
images with few features or low resolution. The learning-based
image stitching solutions are rarely studied due to the lack
of labeled data, making the supervised methods unreliable. To
address the above limitations, we propose an unsupervised deep
image stitching framework consisting of two stages: unsupervised
coarse image alignment and unsupervised image reconstruction.
In the first stage, we design an ablation-based loss to constrain
an unsupervised homography network, which is more suitable
for large-baseline scenes. Moreover, a transformer layer is
introduced to warp the input images in the stitching-domain
space. In the second stage, motivated by the insight that the
misalignments in pixel-level can be eliminated to a certain extent
in feature-level, we design an unsupervised image reconstruc-
tion network to eliminate the artifacts from features to pixels.
Specifically, the reconstruction network can be implemented
by a low-resolution deformation branch and a high-resolution
refined branch, learning the deformation rules of image stitching
and enhancing the resolution simultaneously. To establish an
evaluation benchmark and train the learning framework, a com-
prehensive real-world image dataset for unsupervised deep image
stitching is presented and released. Extensive experiments well
demonstrate the superiority of our method over other state-of-
the-art solutions. Even compared with the supervised solutions,
our image stitching quality is still preferred by users.

Index Terms— Computer vision, deep image stitching, deep
homogrpahy estimation.

I. INTRODUCTION

Remember that all models are wrong; the practical question
is how wrong do they have to be to not be useful.

George E. P. Box

MAGE stitching is a crucial and challenging computer
vision task that has been well-studied in the past decades,
with the purpose to construct a panorama with a wider field-
of-view (FOV) from different images captured from different

Manuscript received January 24, 2021; revised May 29, 2021 and June 22,
2021; accepted June 23, 2021. Date of publication July 2, 2021; date of
current version July 9, 2021. This work was supported by the National Natural
Science Foundation of China under Grant 61772066 and Grant 61972028. The
associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Nikolaos Mitianoudis. (Corresponding author:
Chunyu Lin.)

Lang Nie, Chunyu Lin, Kang Liao, and Yao Zhao are with the Institute of
Information Science, Beijing Jiaotong University, Beijing 100044, China, and
also with the Beijing Key Laboratory of Advanced Information Science and
Network Technology, Beijing 100044, China (e-mail: nielang@bjtu.edu.cn;
cylin@bjtu.edu.cn; kang_liao@bjtu.edu.cn; yzhao@bjtu.edu.cn).

Shuaicheng Liu is with the School of Information and Communication
Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China (e-mail: liushuaicheng @uestc.edu.cn).

Data is available on-line at www.github.com/nie-lang/UnsupervisedDeep
ImageStitching.

Digital Object Identifier 10.1109/TIP.2021.3092828

, Shuaicheng Liu™, Member, IEEE,

viewing positions. This technology can be of great use in vary-
ing fields such as biology [1], [2], medical [3], surveillance
videos [4], [5], autonomous driving [6], [7], virtual reality
(VR) [8], [9].

Conventional image stitching solutions are feature-based
methods, where feature detection is the first step that can
profoundly affect stitching performance. Then a parametric
image alignment model can be established using the matched
features, by which we can warp the target image to align
with the reference image. Finally, the stitched image can be
obtained by assigning pixel values to each pixel in overlapping
areas between the warped images.

Among these steps, establishing a parametric image align-
ment model is crucial in the feature-based methods. In fact,
the homography transformation is the most used image align-
ment model, which contains translation, rotation, scaling, and
vanishing point transformation, accounting for the transfor-
mation from one 2D plane to another [10] correctly. However,
each image domain may contain multiple different depth levels
in actual scenes, which contradicts the planar scene assumption
of the homography. There are often ghosting effects in the
stitched results since a single homography cannot account for
all the alignments at different depth levels.

Conventional feature-based solutions alleviate the artifacts
in two mainstream ways. The first way is to eliminate the
artifacts by aligning the target image with the reference image
as much as possible [11]-[20]. These methods partition an
image into different areas and compute the homography matrix
for each diverse area. By exerting spatially-varying warpings
on these areas, the overlapping areas are well aligned, and the
artifacts are significantly reduced. The second way is to hide
the artifacts by researching for an optimal seam to stitch the
warped images [21]-[26]. Through optimizing a seam-related
cost, the overlapping can be divided into two complementary
regions along the seam. Then, a stitched image is formed
according to two regions. The feature-based solutions can
significantly reduce the artifacts in most scenes. Still, they rely
heavily on feature detection so that the stitching performance
can drop sharply or even fail in scenes with few features or
at low resolution.

Due to the incredible feature extraction capability of Con-
volutional Neural Networks (CNNs), recently learning-based
approaches have achieved state-of-the-art performance in var-
ious fields such as depth estimation [28], optical flow esti-
mation [29], [30], distortion rectification [31]. Increasing
researchers try to apply CNNs to image stitching. In [32],
[33], the CNNs are only used to extract feature points, while
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Fig. 1. The pipeline of proposed unsupervised deep image stitching. In the
coarse alignment stage, the inputs are warped using a single homography.
In the reconstruction stage, the warped images are used for reconstructing the
stitched image from feature to pixel.

in [4], [7], [34], the CNNs are proposed to stitch images with
fixed viewing positions. Regrettably, these methods are either
not a complete learning-based framework [32], [33], or can
only be used to stitch images with fixed views instead of
arbitrary views [4], [7], [34]. Then, view-free deep image
stitching methods [35], [36] are proposed to overcome the
two problems simultaneously. In these view-free solutions,
deep image stitching can be completed by a deep homography
module, a spatial transformer module, and a deep image
refined module. However, all the solutions are supervised
methods, and there is no real dataset for deep image stitching
because of the unavailability of stitched labels in actual scenes
until now. Therefore, these networks can only be trained
on a ‘no-parallax’ synthetic dataset, resulting in unsatisfying
applications in real scenes.

To overcome the limitations of feature-based solutions
and supervised deep solutions, we propose an unsupervised
deep image stitching framework that comprises an unsu-
pervised coarse image alignment stage and an unsupervised
image reconstruction stage. The pipeline is shown in Fig. 1.
In the first stage, we coarsely align the input images using
a single homography. Different from the existing unsuper-
vised deep homography solutions [37], [38] that require
extra image contents around the input images as supervision,
we design an ablation-based loss to optimize our unsuper-
vised deep homography network that is more suitable for
the large-baseline scenes, where large-baseline is a relative
concept to small-baseline in [38]. Besides, a stitching-domain
transformer layer is proposed to warp the input images in the
stitching-domain with less occupied space than the existing
deep stitching works [35], [36]. In the second stage, we present
an ingenious strategy to reconstruct the stitched images from
feature to pixel, eliminating the artifacts by unsupervised
image reconstruction. In particular, we design a low-resolution
deformation branch and a high-resolution refined branch in the
reconstruction network to learn the deformation rules of image
stitching and enhances the resolution, respectively.

This reconstruction strategy is motivated by an observation:
misalignments in feature-level are more unnoticeable than
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Fig. 2. Motivation: the misalignments in pixel-level can be visually weakened
in feature-level. Col 1: the results of stitching the warped images from
unsupervised coarse alignment stage. Col 2: the results of stitching the warped
features extracted by the ‘convl_2’ in VGGI19 [27]. Col 3-4: reconstructing
from feature to pixel by unsupervised reconstruction network.

in pixel-level (Fig. 2 left). Compared with pixels, feature
maps are more blurred, which indicates the misalignments in
pixel-level can be eliminated to a certain extent in feature-
level. Therefore, we believe it is easier to eliminate artifacts
in feature-level than in pixel-level. To implement this, we first
reconstruct the features of the stitched image that are as close
to the two warped images as possible (Col 3 in Fig. 2). Then
the stitched image can then be reconstructed at pixel-level
(Col 4 in Fig. 2) based on the reconstructed features.

The existing dataset in learning-based solutions [35], [36]
is a ‘no-parallax’ synthetic dataset that cannot represent the
practical application scene. And the datasets in feature-based
solutions are too few to support deep learning training.
To enable our framework the generalization ability in real
scenarios, we also propose a large real-world image stitching
dataset containing varying overlap rates, varying degrees of
parallax, and variable scenes such as indoor, outdoor, night,
dark, snow, and zooming. Here, we define overlap rate as the
percentage of the overlapping area in the total area of the
image.

In experiments, we evaluate our performance in homog-
raphy estimation and image stitching. Experimental results
demonstrate the superiority of our method over other state-
of-the-art solutions in real scenes. The contributions of this
paper are summarized as follows:

« We present an unsupervised deep image stitching frame-
work consisting of an unsupervised coarse image align-
ment stage and an unsupervised image reconstruction
stage.

o« We propose the first large real dataset for unsupervised
deep image stitching (to the best of our knowledge),
which we hope can work as a benchmark dataset and
promote other related research work.

e Our algorithm outperforms the state-of-the-art, includ-
ing homography estimation solutions and image stitch-
ing solutions in real scenes. Even compared with the
supervised solutions, our image stitching quality is still
preferred by users.

II. RELATED WORK

In this section, we subsequently review the existing works
in image stitching and deep homography estimation.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on July 23,2021 at 03:13:21 UTC from IEEE Xplore. Restrictions apply.



6186

A. Feature-Based Image Stitching

According to different strategies to eliminate artifacts,
the feature-based image stitching algorithms can be divided
into the following two categories:

1) Adaptive Warping Methods: Considering that a single
transformation model is not enough to accurately align images
with parallax, the idea of combining multiple parametric
alignment models to align the images as much as possible
is introduced. In [11], the dual-homography warping (DHW)
is presented to align the foreground and the background,
respectively. This method works well in the scene composed
of two predominating planes but shows poor performance in
more complex scenes. Lin ef al. [12] apply multiple smoothly
varying affine (SVA) transformations in different regions,
enhancing local deformation and alignment performance.
Zaragoza et al. [13] propose the as-projective-as-possible
(APAP) approach, where an image can be partitioned into
dense grids, and each grid would be allocated a corresponding
homography by weighting the features. In fact, APAP would
still exhibit parallax artifacts in the vicinity of the object
boundaries, for dramatic depth changes might occur in these
areas. To get rid of this problem, the warping residual vectors
are proposed to distinguish matching features from different
depth planes in [19], contributing to more naturally stitched
images.

2) Seam-Driven Methods: Seam-driven image stitching
methods are also influential, acquiring natural stitched images
by hiding the artifacts. Inspired by the idea of interactive
digital photomontage [39], Gao et al. [24] propose to choose
the best homography with the lowest seam-related cost from
candidate homography matrices. Then the artifacts are hidden
through seam cutting. Referring to the optimization strategy of
content-preserving warps (CPW) [40], Zhang and Liu [22] pro-
pose a seam-based local alignment approach while maintaining
the global image structure using an optimal homography. This
work was also extended to stereoscopic image stitching [41].
Using the iterative warp and seam estimation, Lin ef al. [23]
find the optimal local area to stitch images, which can protect
the curve and line structure during image stitching.

These feature-based algorithms contribute to perceptually
nature stitched results. However, they rely heavily on the
quality of feature detection, often failing in scenes with few
features or at low resolution.

B. Learning-Based Image Stitching

Getting a real dataset for stitching is difficult. In addition,
deep stitching is quite challenging for the scenes with low
overlap rate and large parallax. Subjected to these two prob-
lems, learning-based image stitching is still in development.

1) View-Fixed Methods: View-fixed image stitching meth-
ods are task-driven, which are designed for the specific appli-
cation scenes such as autonomous driving [6], [7], surveillance
videos [4]. In these works, the end-to-end networks are pro-
posed to stitch images from fixed views while they cannot be
extended to stitch images from arbitrary views.

2) View-Free Methods: To stitch images from arbitrary
views using CNNs, some researchers propose to adopt CNNs
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in the stage of feature detection [32], [33]. However, these
methods cannot be regarded as a complete learning-based
framework strictly. The first complete learning-based frame-
work to stitch images from arbitrary views was proposed
in [35]. The images can be stitched through three stages:
homography estimation, spatial transformation, and content
refinement. Nevertheless, this work cannot handle input
images with arbitrary resolutions due to the fully connected
layers in the network, and the stitching quality in real appli-
cations is unsatisfying. Following this deep stitching pipeline,
an edge-preserved deep image stitching solution was proposed
in [36], freeing the limitation of input resolution and signifi-
cantly improving the stitching performance in real scenes.

C. Deep Homography Schemes

The first deep homography method was put forward in [42],
where a VGG-style [27] network was used to predict the eight
offsets of four vertices of an image, thus uniquely determine
a corresponding homography. Nguyen er al. [37] proposed
the first unsupervised deep homography approach with the
same architecture as [42] with an effective unsupervised loss.
Introducing spatial attention to deep homography network,
Zhang et al. [38] proposes a content-aware unsupervised
network, contributing to SOTA performance in small-baseline
deep homography. In [43], multi-scale features are extracted
to predict the homography from coarse to fine using image
pyramids.

Besides that, the deep homography network is usually
adopted as a part of the view-free image stitching frameworks
[35], [36]. Different from [37], [38], [42], [43], the deep
homography in image stitching is more challenging, for the
baseline between input images is usually 2X~3X larger.

III. UNSUPERVISED COARSE IMAGE ALIGNMENT

Given two high-resolution input images, we first estimate
the homography using a deep homography network in an
unsupervised manner. Then the input images can be warped
to align each other coarsely in the proposed stitching-domain
transformer layer.

A. Unsupervised Homography

The existing unsupervised deep homography methods [37],
[38] take the image patches as the input, which is shown in
the white squares in Fig. 3(a). The objective function of these
methods can be expressed as Eq. (1):

Lew = |[PU*) = PP M

.
where 74, I8 represent the full images of the reference image
and the target image, respectively. P(-) is the operation of
extracting an image patch from a full image, and H(-) warps
one image to align with the other using estimated homography.
From Eq. (1), we can see that to make the warped target
patch close to the reference patch, the extra contents around
the target patch are utilized to pad the invalid pixels in the
warped target patch. We call it a padding-based constraint
strategy. This strategy works well in small-baseline [38],
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(a) A failure case of padding-based (b) The proposed ablation-based

strategy. strategy.
Fig. 3. An instance to show that the proposed ablation-based strategy is

more suitable for large-baseline unsupervised homography estimation.

or middle-baseline [37] homography estimations while it fails
in the large-baseline case. In particular, when the baseline
is too large (as illustrated in Fig. 3(a)), there might be no
overlapping area between the input patches, which leads to the
meaningless estimation of homography from these patches.

To solve this problem, we design an ablation-based strategy
to constrain large-baseline unsupervised homography estima-
tion. Specifically, we take the full images as the input, ensuring
that all overlapping areas are included in our inputs. When
we enforce the warped target image close to the reference
image, we no longer pad the invalid pixels in the warped
image. Instead, we ablate the contents in the reference image
where the invalid pixels in the warped target image locate,
as shown in Fig. 3(b). Our objective function for unsupervised
homography is formulated as Eq. (2):

Loy = |HE) 0 1* = 1™ | @)

where © is the pixel-wise multiplication and E is an all-one
matrix with identical size with 74.

As for the architecture of our unsupervised homography
network, we adopt a multi-scale deep model proposed in [36],
which connects feature pyramid and feature correlation in a
unified framework so that it can predict the honography from
coarse to fine and handle relative large-baseline scenes.

B. Stitching-Domain Transformer Layer

The spatial transformer layer was first proposed in [44],
where images can be spatially transformed with gradient
backpropagation guaranteed using the homography model.
In image stitching, input images of the same resolution can
output stitched images of different resolution according to
the varying overlapping rates, which brings a considerable
challenge to deep image stitching. The existing deep image
stitching methods solve this problem by extending the spatial
transformer layer [35], [36]. Specifically, these solutions define
a maximum resolution for the stitched image so that all the
input contents can be included in the output. In addition,
the network will output images with the same resolution
every time. However, most of the space occupied by black
pixels outside the white box in Fig. 4(a) are wasted. To deal
with spatial waste, we propose a stitching-domain transformer
layer. We define the stitching-domain as the smallest bound-
ing rectangle of the stitched image, which saves the most
space while ensuring the integrity of the image contents. The
warped results of ours are illustrated in Fig. 4(b), and our
stitching-domain transformer layer can be implemented as
follows.
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(@ (b)

Fig. 4. The comparison between the spatial transformer layer in existing
deep image stitching and our stitching-domain transformer layer. (a): Warping
by spatial transformer layer in existing deep image stitching [35], [36].
(b): Warping by our stitching-domain transformer layer.

First, we calculate the coordinates of the 4 vertices in the
warped target image by Eq. (3):

v = G vE) + (Axi, Ay, k€ {1,2,3,4), (3)

where (xV, yV), (xP, y2) are the k-th vertex coordinates of
the warped target image and the target image, respectively.
(Axy, Ayy) donate the offsets of the k-th vertex that are esti-
mated form the aforementioned homogrpahy network. Then,
the size of the warped image (H* x W*) can be obtained by
Eq. (4):

W* = max {x),x2 — min {xV,x),
ke{1,2,3,4}{ kode) ke{1,2,3,4}{ R

H* = max Y yAY—  min WoyA 4
ke{l,2,3,4}{yk 9yk} k€{1,2,3,4}{yk 7yk }9 ( )

where (x,?, y,’f) are the vertex coordinates of the refer-
ence image that have the same values as (x,f, y,f ). Finally,
we assign the specific values to the pixels of the warped images
(IAY, 1BW) from the input images (I4, I?), which can be
represented as Eq. (5):

"V =wu4, o,
1*V = w(*?, H), Q)

where [ and H are the identity matrix and the estimated
homography matrix, respectively. And YV (-) donates the oper-
ation of warping an image using a 3 x 3 transformation matrix
with the stitching-domain set to H* x W*.

In this way, we transform the input images in the
stitching-domain space, effectively reducing the space occu-
pied by feature maps in the subsequent reconstruction network.
Compared with the transformer layer used in [35], [36],
the proposed layer can help to stitch larger resolution images
when the GPU memory is limited.

IV. UNSUPERVISED IMAGE RECONSTRUCTION

Considering the limitation that a single homography can
only represent the spatial transformation in the same depth
[10], the input images cannot be completely aligned in the
real-world dataset in the first stage. To break the bottleneck
of single homography, we propose to reconstruct the stitched
image from feature to pixel. The overview of the proposed
unsupervised deep image stitching framework is illustrated
in Fig. 5. The reconstruction network can be implemented by
two branches: low-resolution deformation branch (Fig. 5 top)
and high-resolution refined branch (Fig. 5 bottom), learning
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reconstruction stage.

the deformation rules of image stitching and enhancing the
resolution, respectively.

A. Low-Resolution Deformation Branch

Reconstructing the images only in the high-resolution
branch is not appropriate because the receptive field decreases
relatively as the resolution increases. To ensure that the
receptive field of the network can completely perceive mis-
aligned regions (especially in the case of high resolution
and large parallax), we designed a low-resolution branch to
learn the deformation rules of image stitching first. As shown
in Fig. 5(top), the warped images are first down-sampled to a
low-resolution, defined as 256 x 256, in our implementation.
Then an encoder-decoder network consisting of 3 pooling
layers and 3 deconvolutional layers is used to reconstruct the
stitched image. The filter numbers of the convolutional layers
are set to 64, 64, 128, 128, 256, 256, 512, 512, 256, 256, 128,
128, 64, 64, and 3, respectively. Furthermore, skip connections
are adopted to connect the low-level and high-level features
with the same resolution [45].

In this process, the deformation rules of image stitching
are learned with content masks and seam masks (Fig. 6).
The content masks are adopted to constrain the features
of the reconstructed image close to the warped images,
while the seam masks are designed to constrain the edges
of the overlapping areas to be natural and continuous.
In particular, we obtain the content masks (MAC, MBC)
using Eq. (5) by replacing the 74,72 with an all-one
matrix Egxw, and the seam masks can be calculated by
Eq. (6) and Eq. (7):

AC __ AC AC AC AC
VM =M = MZ 1+ M = MGl

VMPE = |MPE = MES 1+ IMEF - MEE,
MAS = C(VMBC x E33 % E3xs x E3x3) © MAC,

MBS = C(VMAC % E3y3 % E3x3 % E3x3) © MBS, (7)

(6)

where (i, j) donates the coordinate location, * represents the
operation of convolution, and C clips all the elements to
between O and 1. Then we design the content loss and seam

Output
(H**W=)

HR Deformation
Loss

An overview of our unsupervised deep image stitching. Left: the unsupervised coarse image alignment stage. Right: the unsupervised image

loss in low-resolution as Eq. (8) and Eq. (9):

Liontens = Lp(SLr © MAC, 14V
+Lp(SLr © MBC, [BW), (8)
LY oam = L1(SLr © MY 14V © MAS)
+L1(Spr © MBS 1BV © MBS) 9)

where Sy is the low-resolution stitched image. £; and Lp
donate the L1 loss and the perceptual loss [46], respectively.
To make the feature of the reconstructed image as close to that
of the warped images as possible, we calculate the perceptual
loss on layer ‘conv5_3’ of VGG-19 [27] which is deep enough
to shrink the feature difference between the warped images.
Next, the total loss function of low-resolution unsupervised
deformation can be formulated as Eq. (10):

Lrr = j‘C‘ClContent + j‘Sﬁgeam (10)

where Ay and A, weight the contribution of the content
constraint and seam constraint.

B. High-Resolution Refined Branch

After the initialized deformation in the low-resolution
branch, we develop a high-resolution refined branch to
enhance the resolution and refine the stitched image. The
high-resolution refers to the resolution of the output of the
first stage. Actually, in our dataset, the resolution is bigger
than 512 x 512. To illustrate the effect of high-resolution
branch, we exhibit the outputs of two branches in Fig. 7. This
branch is composed of convolutional layers entirely, as shown
in Fig. 5 (bottom), which means it can deal with pictures of
arbitrary resolution. To be specific, it consists of three separate
convolutional layers and eight resblocks [47], of which the
filter number of each layer is set to 64 except that of the
last layer is set to 3. To prevent low-level information from
being gradually forgotten as the convolutional network gets
deep, the feature of the first layer is added with that of the
penultimate layer. Moreover, each resblock is composed of
convolution, relu, convolution, sum, and relu.

We up-sample Sy g to the resolution of the warped images
and concatenate them together as the input of this branch.
The output is the high-resolution stitched image Sgg.
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Fig. 6. Learning deformation rules with masks in low-resolution. From
left to right, each column represents input images (/ A I8), low-resolution
warged ima§es (IAW, IBW), content masks (MAC, MBC), and seam masks
(MAS | MBY).

And we conclude the loss function of the high-resolution
refined branch Ly imitating Eq. (10) as Eq. (11):

_ h h
Lur = j'C£C011tent + j'S‘CSeam (1D
where L:}é ontent and Eg cam Arc the content loss and seam loss

in high-resolution which can be calculated using Eq. (8), (9)
by replacing the S; g and low-resolution masks with the Syg
and the high-resolution masks. When calculating the Lp in
high resolution, we adopt the layer ‘conv3_3" of VGG-19,
since this layer is shallower than the layer ‘conv5_3’ (used in
Lp of low resolution) and the output using this layer is more
clear.

C. Objective Function

The high-resolution branch is designed to refine the stitched
image, but it tends to cause artifacts in the stitched image,
since the increase in resolution can relatively reduce the
receptive field of the network (more details can be found in
Section V-D). To enable our network the abilities to enhance
resolution and to eliminate parallax artifacts simultaneously,
a content consistency loss is proposed as Eq. (12):

Lcs = HS%,SgXZSG - SLRH1 ) (12)

where §7,5**°° is obtained by resizing Sy g to 256 x 256 that
is the resolution of the output in low-resolution branch.

Taking all the constraints into consideration, we conclude
our objective function of the image reconstruction stage as
Eq. (13):

Lr=wrLrLLr +0HRLHR + ©csLcs, (13)

where the wr r, wgr and wcs represent weights of each part.

D. Reconstruction From Feature to Pixel

To exhibit the learning process from feature to pixel,
we visualized the feature maps of the low-resolution defor-
mation branch in Fig. 8. At the very beginning of the encoder
stage, the network only focuses on the overlapping areas,
and the features of non-overlapping areas are all suppressed.
Next, as the resolution decreases, deeper semantic features are
extracted and reconstructed. In the decoder stage, the network
begins to pay attention to non-overlapping areas besides over-
lapping areas. As the resolution is restored, clearer feature
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Fig. 7. The outputs of the low-resolution branch and high-resolution
branch. The high-resolution branch is designed to enhance the resolution and
refine the stitched image.

maps are reconstructed. Finally, the stitched image is recon-
structed at the pixel level.

V. EXPERIMENTS

In this section, extensive experiments are conducted to
validate effectiveness of the proposed method.

A. Dataset and Implement Details

1) Dataset: To train our network, we also propose an
unsupervised deep image stitching dataset that is obtained
from variable moving videos. Of these videos, some are from
[38] and the others are captured by ourselves. By extracting the
frames from these videos with different interval time, we get
the samples with different overlap rates (Fig. 9(b)). Moreover,
these videos are not captured by the camera rotating around
the optical center, and the shot scenes are far from a planar
structure, which means this dataset contains different degrees
of parallax (Fig. 9(c)). Besides, this real-world dataset includes
variable scenes such as indoor, outdoor, night, dark, snow, and
zooming (Fig. 9(a)).

To quantitatively describe the distribution of different over-
lap rates and varying degrees of parallax in our dataset.
We divide the overlap rates into 3 levels and define a high
overlap rate greater than 90%, a middle overlap rate ranging
from 60%-90%, and a low overlap rate lower than 60%. This
classification criterion is formulated according to [37], [38],
[42], where [38] is the represnetative work in high overlap
rate. The average overlap rate of the proposed dataset is greater
than 90%. And [37], [42] are the representative works in
middle overlap rate for the average overlap rate of Warped
COCO (disturbance < 32) dataset [42] is about 75%. Besides,
to describe parallax accurately, we align the target image
with the reference image using a global homography and then
calculate the maximum misalignment error of corresponding
feature points in the coarse aligned images to show the
magnitude of parallax. In this way, we divide the parallax
into 2 levels: small parallax with error smaller than 30 pixels
and large parallax with error greater than 30 pixels. Fig. 9(c)
demonstrates the difference of different parallax intuitively.

In particular, we get 10,440 cases for training and 1,106 for
testing. Among our dataset, the ratios of overlap rates from
high to low are about 16%, 66%, and 18%, while the ratios of
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Fig. 8.
non-overlapping regions.

Outdoor Night Snow Zooming

(a) Varying scenes in our dataset.

I
. T

High overlap rate Low overlap rate

(b) Varying overlap rates in our dataset.

Small parallax

Large parallax

(c) Varying degrees of parallax in our dataset.

Fig. 9.
dataset.

Ilustrations of our proposed unsupervised deep image stitching

parallax from small to large are about 91% and 9%. Although
our dataset contains no ground-truth, we include our testing
results in this dataset, which we hope can work as a benchmark
dataset for other researchers to follow and compare.

2) Details: We train our unsupervised image stitching
framework in three steps. First, we train our deep homography
network on the synthetic dataset (Stitched MS-COCO [35])
for 150 epochs. Second, we finetune the homography network
on the proposed real dataset for 50 epochs. Third, we train
the deep image reconstruction network on the proposed real
dataset for 20 epochs. All the training process is unsupervised,
which means our framework only takes the reference/target
image as input and requires no label. The optimizer is

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Conv6_2

Conv7_2 Output Overlapping region

Visualization of the learning process of the low-resolution deformation branch. The stitched images are reconstructed from overlapping regions to

Adam [48] with an exponentially decaying learning rate with
an initial value of 10~*. We set A, and A, to 2 and 107°.
And wr g, wgr and wcg are set to 100, 1 and 1, respectively.
In testing, it takes about 0.4s to stitch 2 input images with
resolution of 512 x 512. All the components of this framework
are implemented on TensorFlow. Both the training and testing
are conducted on a single GPU with NVIDIA RTX 2080 Ti.

B. Comparison of Homography Estimation

To evaluate the performance of the proposed ablation-based
unsupervised deep homography objectively, we compare our
solution with 1343, SIFT [49]4+RANSAC [50], DHN [42],
UDHN [37], CA-UDHN [38], and LB-DHN [36] on the
synthetic dataset and real dataset respectively. The /3.3 refers
to a 3 x 3 identity matrix as a ‘no-warping’ homography for
reference, and SIFT+RANSAC is chosen as the representative
of traditional homography solutions because it outperforms
most traditional solutions as shown in [37], [38]. The DHN,
UDHN, CA-UDHN, and LB-DHN are the deep learning solu-
tions, of which UDHN and CA-UDHN are the unsupervised
solutions that both adopt the padding-based strategy to train
their networks.

1) Synthetic Dataset: The first comparative experiment is
conducted on Warped MS-COCO that is the most known
synthetic dataset for deep homography estimation. All the
learning methods are trained on Warped MS-COCO. The
results are illustrated in Table I, where ‘Ours_v1’ is our model
trained with this dataset in an unsupervised manner. From
Table I, we can observe:

(1) Ours_v1 outperforms the existing unsupervised deep
homography methods (UDHN, CA-UDHN), of which
CA-UDHN is the SOTA solution in small-baseline deep
homography. However, the performance of CA-UDHN in this
dataset degenerates to be close to that of /33 due to its limited
receptive field.

(2) After adopting our ablation-based unsupervised loss to
LB-DHN, 4pt-Homography RMSE increases, which means
this loss is not suitable for this ‘no-parallax’ synthetic dataset.

2) Real Dataset: Then, we carry on a comparison on the
proposed real dataset, which consists of varying degrees of
parallax. Since this dataset lacks ground truth, we adopt the
PSNR and SSIM of the overlapping regions to evaluate the
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TABLE I
COMPARISON EXPERIMENT ON HOMOGRAPHY ESTIMATION. THE 1ST AND 2ND BEST SOLUTIONS ARE MARKED IN RED AND BLUE, RESPECTIVELY
(a) 4pt-Homography RMSE ({) on Warped MS-COCO (synthetic)

Traditional homography

Deep homography (supervised)

Deep homography (unsupervised)

Method I3x3 \ SIFT [49]+RANSAC [50] || DHN [42] \ LB-DHN [36] UDHN [37] \ CA-UDHN [38] \ Ours_v1 (synthetic)
Top 0~30% || 15.0154 0.6743 3.2998 0.2719 2.1894 15.0082 1.1773
30~60% 18.2515 1.0964 4.8839 0.4140 3.5272 18.2498 1.4544
60~100% 21.3517 19.0286 7.6944 0.9632 6.4984 21.3618 3.0702
Average ][ 18.5220 9.4782 [ 55358 ] 0.5962 [ 43179 | 185234 | 2.0239
(b) PSNR (71) of the overlapping regions on the proposed dataset (real)
Method Traditional homography Deep homography (supervised) Deep homography (unsupervised)
I3x3 [ SIFT [49]+RANSAC [50] || DHN [42] [ LB-DHN [36] UDHN [37] [ Ours_vl (synthetic) | Ours_v2 (real)
Top 0~30% || 16.1923 25.2300 16.3957 24.7515 19.3851 26.1958 27.8386
30~60% 13.0546 22.2308 13.3648 21.1436 15.9251 22.6115 23.9451
60~100% 10.8747 17.5791 11.5001 18.4594 13.1016 19.5277 20.7013
Average ][ 13.1151 | 21.2541 [ 135191 ] 21.1418 [ 158252 ] 22.4421 | 238045
(c) SSIM (1) of the overlapping regions on the proposed dataset (real)
Method Traditional homography Deep homography (supervised) Deep homography (unsupervised)
I3x3 [ SIFT [491+RANSAC [50] || DHN [42] [ LB-DHN [36] UDHN [37] [ Ours_vl (synthetic) | Ours_v2 (real)
Top 0~30% || 0.3869 0.8598 0.4088 0.8249 0.5732 0.8671 0.9023
30~60% 0.1730 0.7662 0.1699 0.7124 0.3344 0.7844 0.8298
60~100% 0.0732 0.5583 0.0772 0.5497 0.1651 0.6270 0.6846
\ Average H 0.1969 \ 0.7105 H 0.2042 \ 0.6805 H 0.3379 \ 0.7456 \ 0.7929 \

performance, which can be calculated as Eq. (14):

PSNRm)erlap = PSNR(H(E) © IA, H(IB))a
SSIMouerlap = SSIM(H(E)QIA7 H(IB))» (14)

where PSNR(-) and SSTM(-) donates the operations of
computing PSNR and SSIM between two images, respectively.
We test DHN and UDHN using the public pretrained models.
LB-DHN and Ours_v1 are trained on Stitched MS-COCO [35]
which is similar to Warped MS-COCO with lower overlap rate.
Ours_v2 is the model of finetuning Ours_v1 about 50 epochs
on the proposed real dataset. By analyzing the results shown
in Table I (b) I(c), we can conclude:

(1) The proposed unsupervised solution (Ours_v2) outper-
forms all the methods, including the supervised ones in the
real dataset.

(2) Although Ours_v1 and LB-DHN are both trained on the
synthetic dataset, Ours_v1 achieves better performance under
the real dataset, which indicates the proposed unsupervised
loss can equip the network with better generalization ability.

C. Comparison of Image Stitching

To verify our method’s superiority in image stitching,
we compare our method with feature-based solutions and
compare with recent learning-based solutions (even if it is
not fair to compare our unsupervised algorithms with the
supervised ones).

1) Compared with Feature-Based Solutions: In this section,
we choose global Homography [10], APAP [13], robust ELA
[18] as the representatives of feature-based solutions to com-
pare with our algorithms. Of these methods, we implement
Homography with global projective transformation, and we
get the stitched results of APAP and robust ELA (adaptive
warping methods) by running their open-source codes with our

testing instances. After alignment, image fusion is adopted to
produce the stitched image and reduce artifacts. Specifically,
we fuse the warped images with the pixel-weighted principle,
assigning a relatively large weight to the pixel with a high
intensity value.

a) Study on  Robustness: The performance of
feature-based solutions is easily affected by the quantity
and distribution of the feature points, resulting in weak
robustness in varying scenes. By contrast, the proposed
method overcomes this problem. To validate this view,
we test the feature-based methods and ours on our test
set (1,106 samples). To simulation the change of feature
quantity, we resize the test set to different resolutions, e.g.,
512 x 512, 256 x 256, and 128 x 128. As the resolution
decreases, the number of features decreases exponentially.
The results are shown in Table II, where ‘error’ indicates
the number of program crashes and ‘failure’ refers to the
number of stitching unsuccessfully. Specifically, we define
significant distortion (Fig. 10 top) and intolerable artifacts
(Fig. 10 bottom) as ‘failure’. All the stitched results of these
methods will be public with our dataset. Comparing the
success rates in Table II, we can observe:

(1) Ours is more robust than the feature-based methods.
In fact, the ‘error’ and ‘failure’ cases of the feature-based
solutions are mainly distributed in low-light and indoor scenes,
while ours performed well in these challenging scenes.

(2) As the resolution decreases, the success rates of
learning-based methods decrease while ours remains robust.

Besides, to perceive the robustness more intuitively, Fig. 11
demonstrates two challenging examples in the scenes of
indoors and dark. Since the sample in dark is too dark to see
clearly, we impose image augmentation to better exhibit these
results (Row 3 in Fig. 11). These examples are challenging
for the feature-based solutions because the features in these
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TABLE II

COMPARISON OF ROBUSTNESS FOR IMAGE STITCHING. THE NUMBER OF TESTING CASES Is 1,106

Input resolution | Metrics Feature-based Learning-based (supervised) Learning-based (unsupervised)
p Homography [10] | APAP [13] | robust ELA [18] || VFISNet [35] | EPISNet [36] Ours

Error 0 3 0 - 0 0
Failure 86 31 111 - 22 15

SIZSIZ 86 34 111 - pp) 05
Success rate 92.22% 96.93% 89.96% - 98.01% 98.64%
Error 0 10 0 - 0 0
Failure 88 40 124 - 22 15

256x256 o 38 50 124 - 2 15
Success rate 92.04% 95.48% 88.79% - 98.01% 98.64%
Error 1 158 9 0 0 0
Failure 206 66 214 131 32 15

128128 =po 207 24 23 131 0 5
Success rate 81.28% 79.75% 79.84% 88.16% 97.11% 98.64%

Fig. 10.

Demonstration
Bottom: intolerable artifacts.

APAP robust ELA Ours

Inputs

Homography

Fig. 11. Challenging samples to compare the robustness more intuitively in
the scenes of indoors and dark. Row 1: indoors. Row 2: dark. Row 3: image
augmentation to the dark scene. The resolution of the inputs is 512 x 512.

scenes are hard to detect. In contrast, our solution stitches them
successfully due to the fantastic feature extraction capabilities
of CNNs.

b) Study on Visual Quality: The proposed deep image
stitching framework should be regarded as a whole which
takes two images from arbitrary views as inputs and outputs
the stitched result. Therefore, the traditional indicator that
calculates the similarity of the overlapping regions is not
suitable for our method. To compare with other methods quan-
titatively, we design user studies on visual quality. Specifically,
we compare our method with Homography, APAP, and robust
ELA one by one. At each time, four images are shown on
one screen: the inputs, our stitched result, and the result from
Homography/APAP/robust ELA. The results of ours and the
other method are illustrated in random order each time. The
user may zoom-in on the images and is required to answer
which result is preferred. In the case of “no preference,” the
user needs to answer whether the two results are “both good”

Fig. 12. User study on visual quality: compared with feature-based methods.
The numbers are shown in percentage and averaged on 20 participants.

or “both bad”. The studies are carried out in our testing set,
which means every user has to compare each method with
ours in 1,106 images. In this study, we invite 20 participants,
including 10 researchers/students with computer vision back-
grounds and 10 volunteers outside this community.

The results are shown in Fig. 12. Neglecting the ratio of both
good and both bad, we find that preferring ours is significantly
more than preferring other methods, which means our results
have higher visual quality in users’ evaluation.

To further demonstrate our performance, we also display
the stitched results on the proposed real dataset (row 1-8 in
Fig. 13) and on the classic image stitching instances outside
of our dataset (row 9-10 in Fig. 13). All the cases are with
varying degrees of parallax. Besides promising visual quality,
it verifies the generalization ability of our model.

2) Compared with Learning-Based Solutions: The existing
learning-based image stitching methods (VFISNet [35] and
EPISNet [36]) are supervised learning methods, which require
extra labels to train the network. In the case that it is unfair to
compare our unsupervised solution with the supervised ones,
our method still exhibits a superiority over them on robustness,
continuity, illumination, and visual quality.

a) Study on Robustness: VFISNet is the first deep image
stitching work that can stitch images from arbitrary views
in a complete deep learning framework. However, it has
a nonnegligible shortcoming: it can only stitch images of
128 x 128. Therefore, only the result under the resolution
of 128 x 128 is given when measuring its robustness. The
detailed results in Table II shows that the robustness of ours is
better than other supervised ones. This can be accounted for by
the following two reasons: (1) Our unsupervised deep homog-
raphy model outperforms the other methods on robustness,
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Inputs APAP robust ELA

Homography

Ours VFISNet+Bicubic EPISNet

Fig. 13.  Visual comparison of the image stitching quality. Row 1-8: instances with varying degrees of parallax from the proposed dataset. Row 9-10: “yard”
[24] and “temple” [11] (classic image stitching instances outside of our dataset).

which significantly reduces failure cases caused by inaccurate
homography estimation.

(2) Our unsupervised deep image reconstruction model can
effectively reduce artifacts by reconstructing the stitched image
from feature to pixel, which reduces failure cases caused by
intolerant artifacts.

b) Study on Continuity: The supervised deep image
stitching methods [35], [36] sacrifice the continuity of the
edges (the edges between the reference image and the
non-overlapping areas of the target image) to minimize arti-
facts. Although an edge-preserved network is proposed in
EPISNet to weaken this problem, this problem still exists in a
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(b) Comparison of illumination difference. Left: EPISNet [36]. Right:
ours.

Fig. 14.  Study on continuity and illumination.

Compared with VFISNet+Bicubic Compared with EPISNet

3.9 55.0

08 Il Ours 6.6 H Ous
. M Both good : I Both good
Both bad Both bad
0.2 I VFISNet+Bicubic| 78 I EPISNet
I I I I
0 20 40 60 80 100 0 20 40 60 80 100

Fig. 15. User study on visual quality: compared with learning-based methods.
The numbers are shown in percentage and averaged on 20 participants.

few testing cases. The discontinuity is demonstrated in the left
picture of Fig. 14(a), where discontinuous areas are framed and
enlarged. This problem is settled perfectly in our unsupervised
approach, as shown in the right picture of Fig. 14(a). It gives
credit to our constraint on seam masks, which enforces the
edges of the overlapping areas close to one of the warped
images.

c¢) Study on Illumination: Another advantage of our
method is that ours can smooth the illumination difference
between the two images. The comparison with EPISNet are
illustrated in 14 (b). The supervised methods fail to smooth the
illumination difference because they are trained in a synthetic
dataset with no illumination difference in the input images
(the supervised methods cannot be trained in a real dataset
due to the lack of stitched labels). On the contrary, our
method is trained in real scenes, which can effectively learn
how to smooth the illumination difference caused by different
shooting positions.

d) Study on Visual Quality: Similar to the user study
with feature-based methods, we adopt the same strategy to
investigate every participant to compare our method with

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE III
FRAMEWORKS FOR ABLATION STUDIES
Architecture Loss
LR branch | HR branch || Content loss | Seam loss | CS loss

vl v v
v2 v v v
v3 v v v v
Ours v v v v v

the existing learning-based ones. Considering VFISNet can
only work on the resolution of 128 x 128, we use Bicubic
interpolation to resize the stitched images. The results are
shown in Fig. 15. Since Bicubic interpolation inevitably
brings blurs when zooming in on images, the probability of
preferring our method is further greater than that of prefer-
ring VFISNet+Bicubic. Even compared with EPISNet, our
method is still preferred on the visual quality of the stitched
images.

Besides that, Fig. 13 exhibits the visual comparative results
with these supervised methods, where the green rectangles
indicate the severely blurred regions and the red rectangles
point to discontinuous edges.

To perceive our visual quality more intuitively, more results
are illustrated in Fig. 16, where the inputs and the outputs are
demonstrated together.

D. Ablation Studies

In this section, ablation studies are performed on both
network architectures and loss functions. In the architecture,
we validate the effectiveness of the low-resolution branch (LR
branch) and high-resolution branch (HR branch); in the loss,
we test the function of the content loss, seam loss, and content
consistency loss (CS loss). The properties of all the studied
frameworks are shown in Table III.

From the results which are illustrated in Fig. 17, we can
observe:

(1) The most straightforward combination of LR branch
and content loss can realize image stitching. However, there
are still two issues unresolved: seam distortions (row 1,
col 4 in Fig. 17) and limited resolution. In our analysis,
the seam distortion is the side effect of the proposed content
loss.

(2) Compared v2 with vl1, the HR branch can effectively
enhance the resolution of the stitched image. As the cost, a few
artifacts (row 2, col 2 in Fig. 17) are introduced since the
receptive field of HR branch convolution kernels is too small
for higher resolution images.

(3) Compared with v2, v3 removes the seam distortions
(row 3, col 4 in Fig. 17) using the proposed seam loss.
By imposing a pixel-level similarity constraint on the edge
of the overlapping area, the seam distortions are suppressed
successfully. However, there are still artifacts (row 3, col 2 in
Fig. 17) in the stitched image.

(4) Compared with v3, ours removes the artifacts (row 4,
col 2 in Fig. 17) using the proposed CS loss. The CS loss
serves as an enhancer of the receptive field, which promotes
the receptive field of the HR branch from that of the LR
branch.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on July 23,2021 at 03:13:21 UTC from IEEE Xplore. Restrictions apply.



NIE et al.: UNSUPERVISED DEEP IMAGE STITCHING: RECONSTRUCTING STITCHED FEATURES TO IMAGES

6195

(b) Results on our proposed dataset. From left to right: “stairs”,

»

snow”, “grass”, “lake”, and “campus”.

Fig. 16.  More results of ours.

Fig. 17.  Ablation studies on our framework. Col 1: outputs of different
frameworks. Col 2-4: enlarged image patches to show the differences on
artifacts, definition, and seam distortions, respectively.

VI. LIMITATION AND FUTURE WORK

The proposed solution eliminates parallax artifacts through
reconstructing the stitched images from feature to pixel. It is
still essentially a stitching method based on a single homog-
raphy. As the parallax increases, the alignment performance
of the first stage will decrease, while the burden of the
reconstruction network will also become heavier. When the
parallax is too large, the reconstruction network may treat
the misalignments as new objects to reconstruct. An example
is shown in Fig. 18. In the future, we hope to solve this
problem in two directions: 1) Improve the alignment per-
formance of the alignment network to decrease the burden

APAP

robust ELA

Fig. 18. A failure example. The red circle indicates the unsatisfying stitched
areas.

of the reconstruction network. 2) Increase the receptive field
of the reconstruction network to deal with remained large
misalignments.

VII. CONCLUSION

This paper proposes an unsupervised deep image stitching
framework, comprising unsupervised coarse image alignment
and unsupervised image reconstruction. In the alignment stage,
an ablation-based loss function is proposed to constrain the
unsupervised deep homography estimation in large-baseline
scenes, and a stitching-domain transformer layer is designed
to warp the input images in the stitching-domain space.
In the reconstruction stage, an unsupervised deep image
reconstruction network is proposed to reconstruct the stitched
images from feature to pixel, eliminating the artifacts in an
unsupervised reconstruction manner. Besides, a real dataset
for unsupervised deep image stitching is presented, which
we hope can work as a benchmark dataset for other meth-
ods. Experimental results demonstrate the superiority of our
method over other state-of-the-art solutions. Even if compared
with the supervised deep image stitching solutions, the results
of our unsupervised approach are still preferred by users in
terms of visual quality.
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However, the reconstruction ability is not unlimited, which
indicates our solution may fail in the scenes with extremely
large parallax. Considering our first stage is essentially an
alignment model based on a single homography, the ability
to handle large parallax can be improved by extending the
linear deep homography network to a non-linear homogra-
phy model. Moreover, the reconstruction performance can
be further increased by increasing the receptive field of the
reconstruction network, which is also an exploring direction
of the future work.
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