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With Handcrafted Feature
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Abstract— Image representation methods based on deep convo-
lutional neural networks (CNNs) have achieved the state-of-the-
art performance in various computer vision tasks, such as image
retrieval and person re-identification. We recognize that more
discriminative feature embeddings can be learned with supervised
deep metric learning and handcrafted features for image retrieval
and similar applications. In this paper, we propose a new
supervised deep feature embedding with a handcrafted feature
model. To fuse handcrafted feature information into CNNs and
realize feature embeddings, a general fusion unit is proposed
(called Fusion-Net). We also define a network loss function
with image label information to realize supervised deep metric
learning. Our extensive experimental results on the Stanford
online products’ data set and the in-shop clothes retrieval data set
demonstrate that our proposed methods outperform the existing
state-of-the-art methods of image retrieval by a large margin.
Moreover, we also explore the applications of the proposed
methods in person re-identification and vehicle re-identification;
the experimental results demonstrate both the effectiveness and
efficiency of the proposed methods.

Index Terms— Deep feature embedding, handcrafted feature,
image representation, deep metric learning, image retrieval,
person re-identification, vehicle re-identification.

I. INTRODUCTION

LEARNING discriminative feature embeddings is an
important task in computer vision. Image features

obtained from deep convolutional neural networks (DCNNs)
have achieved state-of-the-art performance in image
classification [1]–[3] and image retrieval [4]–[6] tasks.
Unlike the image classification task that aims to determine
the classification of hyperplanes in the feature space, the image
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retrieval task minimizes the intra-class distance of similar
images and maximizes the inter-class distance of dissimilar
images. Various deep feature embedding methods based
on metric learning [7] have been proposed to improve the
performance of image retrieval, including: (1) Deep metric
learning by constructing different metric loss functions,
e.g., contrastive loss [8], triplet loss [9], lifted structured
loss [10], histogram loss [11], facility location [12], global
loss [13], radial basis function [14] and position-dependent
deep metric [15]; (2) combining multiple loss functions, e.g.,
jointly optimizing contrastive loss and softmax loss [16],
jointly optimizing triplet loss and softmax loss [17], [18],
or combining global and triplet loss [19]; and (3) using hard
negative/positive sample mining [19].

There are two major advantages in using metric loss as the
network loss function. First, because the parameters of the
deep feature embedding layer are optimized by the metric
(Euclidean or Cosine distances) used for image retrieval,
the embedded feature obtained by metric loss is more robust
than that by the softmax loss for image retrieval. Second,
the convergence rate with metric loss is faster than softmax
loss during the network training stage. However, because
the embedded features are used to compute the metric loss,
it might suffer from over-fitting. Recently, to embed more
information into deep features, methods combining multiple
losses have been developed [16]–[18], [20]–[22]. Compared
to those methods that optimize the metric loss or the softmax
loss, they can boost the performance of image retrieval.
However, it is difficult to determine the optimal weight for
each loss function.

After studying the literature, we find that most state-of-the-
art deep feature embedding models are semi-supervised learn-
ing, and they are only used for convolutional neural networks
or handcrafted features, respectively. Typically, the semi-
supervised deep feature embedding models only need similar
and dissimilar pairs of data sets. However, more and more
data are labeled with the development of supervised learning.
Thus, it is best to consider the labels’ information of the
data in the deep feature embedding models. Moreover, in the
feature fusion, some works [23]–[25] demonstrate that fusing
the deep feature and handcrafted feature is an effective method
for image-based applications, and these two types of features
are complementary. We recognize that the handcrafted feature
can boost the robustness of CNNs if its information can
be merged into the network to participate in the training
process.
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Fig. 1. (a). The previous commonly used deep feature embedding model. (b). Our proposed supervised deep feature embedding with handcrafted feature
model.

Some works have been proposed to address the prob-
lem of how to fuse multiple CNN features or handcrafted
features [26]–[30]. In order to classify indoor scenes,
Li et al. [26] proposed a method to fuse RGB and depth
information based on the CNN. To detect iris presenta-
tion attack, Yadav et al. [27] proposed a method to fuse
handcrafted features and VGG feature. Xiong et al. [28] pro-
posed a method to fuse multiple CNN features extracted from
local image patches to compose the image feature. Although
the performance improved after feature fusion, there are no
feature embedding in these methods. From a different point
of view, Sun et al. [29] studied the theory of feature fusion,
and feature transform was proposed in their method. However,
this theory is not based on the CNN framework. Moreover,
Akilan et al. [30] proposed a method to fuse multiple CNN
features. In their method, multi-model CNN features were first
extracted, and then the PCA transformation was performed on
these features, respectively. Finally, these transformed features
were fused and a classifier was trained. This method is started
from the perspective of extracting CNN features and then
fusing them. Because each part of this method is individually
trained, thus it cannot benefit from end-to-end learning.

In this paper, we study how to combine image labels
and handcrafted features into the deep feature embedding
model based on theoretical analysis. The proposed method can
effectively improve the robustness of feature embedding under
the supervision of image labels and the information merger
of handcrafted features. Thus, the overall image retrieval
performance can be significantly improved.

We have obtained state-of-the-art results on the Stanford
Online Products’ data set and the In-shop Clothes Retrieval
data set for general image retrieval. The performance improve-
ment is primarily from the combination of the softmax loss
and our proposed class-metric loss, as well as the embedding
of merging handcrafted features. In addition, experiments
are conducted on the Market-1501 [31] data set and the
MARS [32] data set for person re-identification (re-ID) [33],
and the VeRi-776 [34] data set for vehicle re-identification
(re-ID). A variety of experiments demonstrate that our pro-
posed methods have a wide range of applicability.

Our works have the following three major contributions.

• First, we propose a new supervised deep feature embed-
ding with handcrafted feature model. In this model,
a general fusion unit (Fusion-Net in Fig. 1(b)) is proposed
to fuse handcrafted feature information into CNNs. For

forward propagation, both CNN and handcrafted repre-
sentations can be embedded directly into the final rep-
resentation vector. For back propagation, the handcrafted
feature information can be back propagated to CNN and
participate in the parameters update of CNN.

• Second, in order to embed label information into the
feature embedding, a new loss function combining the
distance metric with the label information is proposed.
In the proposed loss function, the sample’s label informa-
tion is indirectly (softmax loss) and directly (class-metric
loss) embedded into the final feature embeddings at the
training stage. Therefore, the ability of the final feature
embedding is improved.

• Third, a variety of experiments are conducted, including
the applications of image retrieval, person re-ID and vehi-
cle re-ID. We obtain the state-of-the-art feature embed-
ding for general image retrieval and vehicle re-ID based
on the GoogLeNet [3] and 4-RootHSV [35] feature.

The rest of this paper is organized as follows. In Section II,
related works about deep metric learning and multi-loss func-
tion optimization are reviewed. The idea and details of the
proposed supervised deep metric learning with handcrafted
feature are presented in Section III. In Section IV, algorithm
implementation details, data sets, evaluation metrics, and the
experimental results are presented. Section V concludes the
paper.

II. RELATED WORK

Works related to our method mainly include the following
two aspects: (1) deep feature embedding with deep metric
learning; (2) multi-loss function optimization.

A. Deep Feature Embedding With Deep Metric Learning

The purpose of deep metric learning is to train a matrix
based on deep learning methods that can transform the input
data into a low dimensional space, such that the transformed
result is most suitable for the metric used for supervised learn-
ing. The original idea was proposed by Bromley et al. [36].
In their work, they trained a Siamese network for signature
verification. Then, Chopra et al. [37] trained a similarity met-
ric discriminatively for face verification. They try to minimize
a discriminative loss function (contrastive loss [8], [36]) that
makes the similarity metric small for faces within a same class
and large for faces from different classes.
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During the past few years, instead of using the con-
trastive loss function [8], [36], which uses the paired data
{(xi , x j , yi j )} (xi ∈ R

m and x j ∈ R
m represent column

vectors, and yi j ∈ {0, 1} denotes dissimilar and similar,
respectively) to train a feature embedding, the triplet loss
function [9], [38], [39] is widely used to train deep feature
embedding because it uses more informative triplet data
{(x(i)

a , x(i)
p , x(i)

n )} (the dimension of these column vectors also
belongs to R

m ), where (x(i)
a , x(i)

p ) are selected from one class
and (x(i)

a , x(i)
n ) are selected from different classes. Based on

these methods, Song et al. [10] uses all positive pairs and all
negatives pairs of samples in a mini-batch and proposes a lifted
structured loss function. Ustinova and Lempitsky [11] pro-
posed a histogram loss function based on estimating two distri-
butions of similarities for matching and non-matching sample
pairs. Considering the global structure of the embedding space,
Song et al. [12] proposed a facility location optimization
method to optimize a clustering quality metric of normalized
mutual information (NMI) [40]. Kumar et al. [13] proposed
a global loss by minimizing the variance of distributions in
matching and non-matching pairs. In addition, it minimizes
the mean value of the distance values between matched pairs,
while maximizing the mean value of the distances between
non-matched pairs. Based on a radial basis function (RBF),
Meyer et al. [14] proposed the nearest neighbor RBF solver to
optimize the deep neural networks. To learn a similarity metric
that adapts to a local structure, Huang et al. [15] proposed a
position-dependent deep metric (PDDM).

All these methods are only distance-based, and there is no
classification probability participated in the metric computa-
tion stage. In our work, we propose a class-metric loss by
combining distances and classification probabilities of a batch
samples. Similar with the previous works, in the proposed
class-metric loss, the similarities of samples are also computed
based on the distances of the corresponding feature embed-
dings. The purpose is also to minimize the intra-class distance
of similar images and maximize the inter-class distance of
dissimilar images.

B. Multi-Loss Function Optimization

Jointly training convolution neural networks with different
loss functions is a very effective approach to improving net-
work performance. The general formulation of the multi-loss
function is usually defined as:

L = αL1 + βL2 (1)

where α and β are the weights of loss L1 and L2, respectively.
In deep feature embedding, α + β = 1, and one of the losses
is the softmax loss; another is a metric loss. The softmax
loss contains label information, and the metric loss contains
structural information. The methods in [16], [20], and [21]
jointly optimized the contrastive loss and softmax loss, and the
methods in [17], [18], and [22] jointly optimized the triplet loss
and softmax loss. References [13] and [19] adopted a different
approach that combined a global and a triplet loss to train the
network.

When compute the loss value of the multi-loss function,
only two or three examples are used based on the contrastive
loss or the triplet loss. Thus, the examples of a batch size
in the network training stage can not be fully used. In our
work, we propose jointly optimizing the softmax loss and our
proposed class-metric loss based on all the examples of a batch
size.

III. SUPERVISED DEEP FEATURE EMBEDDING

WITH HANDCRAFTED FEATURE

As shown in Fig. 1(a), the previous deep feature embedding
model based on only CNNs, and a metric loss or metric
combined with softmax loss (Eq.(1)) was used. We recognize
that the parameter update of CNNs during back propagation
and deep feature embedding can benefit from handcrafted fea-
tures. Based on this idea, a supervised deep feature embedding
with the handcrafted feature model is proposed in this paper.
As shown in Fig. 1(b), the handcrafted feature is merged by
the unit of Fusion-Net, and a new loss function (class-metric
loss) is proposed to train CNN. Next, we will describe our
model in detail from a theoretical perspective.

A. Unconstrained Metric Learning

Metric learning is a popular research area in machine
learning. Given two examples {(xi , x j )}, a general Euclidean
distance after transform φ(·) can be defined as:

Dφ = ||φ(xi ) − φ(x j )||2. (2)

Based on this definition, the popular unconstrained metric loss
function (e.g., LMNN [38]) can be rewritten as:

L(φ) =
�

(i, j )∈P
||φ(xi )−φ(x j )||22+γ

�
(i, j )∈P,(i,k)∈N

×[1 + ||φ(xi )−φ(x j )||22−||φ(xi ) − φ(xk)||22]+ (3)

In Eq.(3), P denotes a positive pair set, i.e., xi and x j belong
to the same category in a data set. N denotes a negative pair
set, i.e., xi and xk belong to different categories in a data set.
The symbol [·]+ indicates the hinge-loss [·]+ = max(0, ·).
Most metric learning tasks can be generalized to minimize
Eq.(3).

We first analyze the φ(x) function in Eq.(2) using the
Mahalanobis distance (the motivation of using this distance is
analyzed in Section III-B). For a given matrix G, the square
Mahalanobis distance is defined as:

D2
G = (xi − x j )

T G(xi − x j ). (4)

With singular value decomposition of the Mahalanobis matrix
G, we have G = H�HT (here, G is a Positive Semi
Definite (PSD) matrix, but some algorithms do not have
to constrain the matrix G to be a PSD matrix, e.g., deep
metric learning algorithms), where H is an orthogonal matrix
satisfying HHT = I, � is a diagonal matrix containing all the
eigenvalues. So, Eq.(4) can be rewritten as:

D2
G = (xi − x j )

T H�HT (xi − x j )

= (HT xi − HT x j )
T �(HT xi − HT x j ) (5)
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Comparing Eq.(2) and Eq.(5), the transform function φ(x)
in Eq.(2) can be defined as φ(x) = xT M, and M can be used to
approximate G and MMT = G. If x ∈ R

m , then M ∈ R
m×d .

In the past few decades, the handcrafted features of image
have been commonly used as x. However, in recent years,
the deeply learned features of an image are the most commonly
used features. Thus, we consider incorporating handcrafted
features into the deep feature embedding model and believe
that handcrafted features can enhance the discriminative power
of deep feature embedding.

Motivated by this observation, in this paper, the handcrafted
feature is merged into the deep feature embeddings according
to the following definitions 1 and 2.

Definition 1: For representations x(1), x(2), · · · , x(k) of
one object, we define a transformation of these representations
as:

F(x(1), x(2), · · · , x(k))

= [x(1)T W1, x(2)T W2, · · · , x(k)T Wk]. (6)

where the symbol [x, y] represents the concatenation of vector
x and y. Here, we introduce a transformation function F(x) =
xT W ∈ R

m1 to regulate the input data, and W ∈ R
m×m1 is

restricted to being a low-rank matrix. F(x) is defined as the
converter of x.

Definition 2: For representations x(1), x(2), · · · , x(k) of
one object, we define another transformation of these repre-
sentations as:

φ(x(1), x(2), · · · , x(k))

= F(x(1), x(2), · · · , x(k))T M (7)

where M ∈ R
m1×d is an embedding matrix, and we also

limit M to be low rank for compressed representation of
high-dimensional concatenated representations. Furthermore,
the rank of M must be lower than the rank of W to obtain
a low-dimensional feature embedding. φ(·) is defined as a
merger of multiple transformed features.

Because we only merge one handcrafted feature into the
deep feature embeddings, in this paper, we only consider k = 2
(i.e., deeply learned feature and handcrafted feature). Based on
definitions 1 and 2, Eq.(2) can be rewritten as:

DW1,W2,M = ||[xi (1)T W1, xi (2)T W2]T M

− [x j (1)T W1, x j (2)T W2]T M||2 (8)

Based on Eq.(8), iterative methods can be used to find the
values of W1, W2 and M (e.g., multi-layer neural networks
or LogDet divergence [41]) by minimizing Eq.(3). In this
paper, we consider using a multi-layer neural network to solve
this problem for the following reasons: (1) the parameters of
CNN, converters and the merger can be learned in an end-
to-end manner through iterative methods; (2) the robustness
of parameter estimation of the converters and merger can
be enhanced using the mini-batch-based stochastic gradient
descent (SGD) [42] method; (3) because the matrix G in
Eq.(4) is learned by M and W as suggested in definitions 1
and 2 with SGD, we do not need to constrain the matrix G
to being a PSD matrix; (4) the CNN can be tuned during
the learning stage, and handcrafted feature information can be

back propagated to CNN, which will enhance the robustness
of CNN for this optimization task.

Based on the above analysis, the overall system is shown
in Fig. 1(b). It consists of deeply learned representation x(1)
and handcrafted representation x(2) of the input image, fea-
ture converters (F(x(1), x(2)) with unknown parameters W1
and W2), a merger network (φ(x) with unknown parameters
M), and multi-loss functions, which will be discussed in
Section III-D.

B. The Analysis of Mahalanobis Distance-Based Metric
Learning for Our Model

Considering the square of Eq.(8), we divide the matrix
M ∈ R

m1×d into four sub-matrices M11 ∈ R
m(1)

1 ×d(1)
,

M12 ∈ R
m(1)

1 ×(d−d(1)), M21 ∈ R
(m1−m(1)

1 )×d(1)
and M22 ∈

R
(m1−m(1)

1 )×(d−d(1)) as follows:

M =
�

M11 M12
M21 M22

�
(9)

then we have:

D2
W1,W2,M

= [(xi (1) − x j (1))T W1, (xi (2) − x j (2))T W2]M
×[(xi (1) − x j (1))T W1, (xi (2) − x j (2))T W2]T

= [(xi (1) − x j (1))T W1]M11[(xi (1) − x j (1))T W1]T

+ [(xi (2) − x j (2))T W2]M22[(xi (2) − x j (2))T W2]T

+ [(xi (1) − x j (1))T W1]M12[(xi (2) − x j (2))T W2]T

+ [(xi (2) − x j (2))T W2]M21[(xi (1) − x j (1))T W1]T (10)

From Eq.(10), we can see that the matrix M is not only
the metric of individual features but is also the metric of
mutual features. We therefore chose the Mahalanobis distance
in our model. It is different from other metric learning based
on individual features.

C. Representations and Converters

In the deep feature embedding area, The GoogLeNet [3]
is a commonly used CNN. To facilitate the comparison of
experimental results, this paper is also based on this network.
For handcrafted features, global representations such as 4-
RootHSV [35] and local representations such as VLAD [43]
are commonly used features. Generally speaking, global repre-
sentations are more suitable for general image retrieval. How-
ever, for fine-grained image retrieval [5], local representations
will be more suitable than global representations. This paper
mainly focuses on the task of general image retrieval. Because
color-based handcrafted features and CNN features have been
experimentally proved to be heterogeneous [23], the color-
based 4-RootHSV [35] is used as the handcrafted feature in
our proposed model. Fig. 2 shows an example of the proposed
model.

For the Fusion-Net unit in the proposed model, the con-
verter is an important component. As Definition 1, each input
representation has its own converter corresponding to the W1
and W2 in the Eq.(8). They are marked with red rectangles
in Fig. 2, lying between each input representation and feature
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Fig. 2. An example of the proposed model: the GoogLeNet is used as the
CNN and the 4-RootHSV is used as the handcrafted feature. The converter is
set as an auto-encoder [44]. The merger module is a feature embedding layer.
The class-metric loss is the proposed loss function.

embedding layer. We believe that a good converter must have
the following advantages: (1) It can transform the input image
representations into a relatively consistent space, which can
be considered as a normalization mechanism. (2) It is able to
suppress useless information in each representation for feature
embedding. (3) It can extract useful information, particularly
complementary information from different representations.
In this work, we use the following three methods (the final
performances will be verified by experiments) to obtain the
parameters of the converters.

• Extreme learning machine (ELM) [45], [46]. It is a
fully connected network. The parameters of ELM are
randomly initialized and will not be updated at the
stage of training or fine-tuning. It is a randomly trans-
formed converter for an input vector. Thus, ELM can
be seen as a normalization converter. Since ELM does
not perform the parameter update process, it cannot learn
useful information regarding the input representation for
feature embedding. In addition, it cannot suppress useless
information in each representation.

• Auto-encoder [44]. It is proposed to achieve dimensional
reduction and preserve as much original information as
possible. As shown in Fig. 2, the number of output nodes
equal the number of input nodes in the auto-encoder. The
auto-encoder can be solved by the mean square error
(MSE). As a converter, the auto-encoder can be used
to normalize the input representation and suppress use-
less information. However, because auto-encoder mainly
trains according to its own information, it cannot learn
complementary information with other representations.

• Fully connected (fc) network. By training or fine-tuning
the parameters of fc, it can normalize the input repre-
sentation, learn complementary information, and suppress
information that may result in performance degradation
after feature embedding.

Based on the solution of deep learning, the fully connected
converter can be set as a non-linear function with non-linear
activation in the rectified linear units (ReLUs) [47] as Eq.(11).

F(x, W, b) = max(0, xT W + b) (11)

where x is a column vector and x ∈ R
m . The value of m

is different for different representations. W is a matrix and
W ∈ R

m×m1 . b is a scalar, xT denotes the transposition
of x, and max(0, x) is the activation function of rectified

Fig. 3. Distance and classification relationship between different categories
of samples (different colors in the figure indicate different categories).

linear units (ReLUs) [47]. According to the two input image
representations x(1) and x(2), the function of the converter
can be written as F(x( j), W j , b j ), where j ∈ {1, 2}. Then,
our goal is to solve the parameters of F , namely, finding W j

and b j .

D. Supervised Deep Feature Embedding

According to the analysis of Section III-A, feature embed-
ding can be realized by solving the matrix of M in function
φ(x) = F(x)T M. For low-dimensional feature embedding,
we can use the constraint that M is a low-rank matrix.
If the output of converter F(x) ∈ R

m1 and M ∈ R
m1×d ,

then we let d < m1. In our experiments, d is the size of
feature embedding, which is set as 64, 128, 256 and 512,
respectively. After the parameters of M are solved according
to the constraint in Eq.(3), we can obtain a metric of the
concatenated features (the square of Eq.(8)).

However, there are many problems with minimizing Eq.(3)
directly through SGD and back propagation in deep learning.
The most common issue is that the loss calculated by Eq.(3)
may be very large for some mini-batches. It will cause the
gradient explosion problem during the optimization process.
There are several loss functions that are similar to Eq.(3) in
deep feature embedding [10], [48], for example, lifted struc-
tured loss for feature embedding, which can be used as a
metric loss function instead of Eq.(3).

Still, Eq.(3) or other metric loss only considers the metric
information. In supervised learning tasks, the image label is
a very important supervisory information. This information
can be indirectly embedded into the feature embeddings if
the softmax loss is used; a softmax classifier can be defined
by a function C(x) = φ(x)T P before normalization (the
normalized function is C(xi ) = ex pC(xi )/

�
i ex pC(xi )). The

unknown matrix P can be solved using back propagation and
SGD according to the input vectors and corresponding labels
in the deep learning framework. During back propagation,
the information related with P can be back propagated to φ(x)
and thus participates in optimizing φ(x) (matrix M). Thus,
the final feature embeddings also contain the label information.
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Based on the above analysis, a metric loss only related to the
distance between features and the softmax loss is only related
to the category of features. During training, they are used to
alternately update model parameters. As shown in the Fig. 3,
samples at the edge of a hyperplane may have a low probability
of belonging to the right category (e.g., notations (3) and (4)
in the Fig. 3), where their inter-class distance may be small
(e.g., notation (3) in the Fig. 3), and the intra-class distances
may be large (e.g., notation (4) in the Fig. 3). In deep feature
embedding, to speed up the convergence of the network at
the training stage, for the cases of notations (1) and (2) in the
Fig. 3, we would like to produce a small loss. For the cases of
notations (3) and (4), we expect to produce a large loss. Thus,
a new loss function (called class-metric loss (Lclass−metric))
combined metric with class information is designed as follows:

�Qij = log

⎧⎪⎪⎨
⎪⎪⎩

�
k∈{i, j },
(k,l)∈N

[1+ (pk + pl)

2
]ex p[e − DW1,W2,M(k, l)]

⎫⎪⎪⎬
⎪⎪⎭

+ [1 + (pi + p j )

2
]DW1,W2,M(i, j)

Q = 1

2|P |
�

(i, j )∈P
max(0, �Qij )

2, (12)

Consistent with the notations of Eq.(3), in Eq.(12), N
denotes the negative pair set in a mini-batch, and P denotes the
positive pair set in a mini-batch. e is a margin parameter. |P | is
the number of positive pairs in a mini-batch. ps(s ∈ {i, j, k, l})
is defined as:

ps = 1 − ex pC(xs)+��
r ex pC(xr )+�

. (13)

In Eq.(13), C(x) = φ(x)T P, r is the image index in
a mini-batch, � is used to avoid over-flow. Eq.(13) is the
residual of ground-truth probability with the corresponding
output of softmax classifier for the image Is . In Eq.(12), ps

can be seen as an adaptive distance weighting strategy. The
back propagation gradients of Eq.(12) for the input feature
embeddings can be found in Appendix.

In addition, we construct a multi-loss function by combining
class-metric and softmax losses. The loss function is defined
as:

L = β[αLclass−metric + (1 − α)Lsof tmax] (14)

where α is the weight of the class-metric loss, which is
used to control the proportion of Lclass−metric and Lsof tmax

values. β is the weight of data set, which is used to scale
the value of Lclass−metric and Lsof tmax losses simultane-
ously, thus expanding or shrinking the residual of the two
loss values. Compared with Eq.(1), one unique point of our
multi-loss is that we consider the data set properties using
the hyper-parameter β. For different types of data sets, β will
affect the performance (as shown in Section IV-B). In our
experiments, the notation of softmax+metric-loss is used to
indicate the proposed multi-loss (Eq.(14)).

E. The Time Complexity Analysis of Class-Metric Loss

We begin to analyze the approximate time complexity of
the class-metric loss start from the unit of Fusion-Net based
on a mini-batch (suppose the image number of a mini-batch
is nm ). First, for the converters, suppose that the inputs
x(1) ∈ R

m(1)
and x(2) ∈ R

m(2)
, the weights W1 ∈ R

m(1)×m(1)
1

and W2 ∈ R
m(2)×m(2)

1 . We have that the approximate time
complexity of converters is T1 ≈ O(nm × (m(1) × m(1)

1 +
m(2) ×m(2)

1 )) ≈ O(max(nm ×m(1) ×m(1)
1 , nm ×m(2) ×m(2)

1 )).
Second, for the merger, suppose that the embedding matrix
M ∈ R

(m(1)
1 +m(2)

1 )×d . We have that the approximate time
complexity of merger is T2 ≈ O(nm × (m(1)

1 + m(2)
1 ) × d).

Third, because the dimension of feature embedding is d ,
the approximate time complexity of Eq.(2) is T3 ≈ O(nm ×d).
Fourth, for the classifier, suppose the number of classes is c,
for C(x) = φ(x)T P, the approximate time complexity is T4 ≈

O(nm × d × c). Five, for Eq.(12), the approximate time com-
plexity is T5 ≈ O(|N |+ |P |), and |N |+ |P | is the number of
negative and positive pairs of a mini-batch. Thus, if the number
of data set examples is nd , the approximate time complexity
of class-metric loss is T ≈ O( nd

nm
× max(T1, T2, T3, T4, T5)).

F. Model Training

The model is trained using back propagation and stochas-
tic gradient descent (SGD) [42] with a Nesterov momen-
tum of 0.9. We use the Caffe [49] framework for training
and testing the proposed methods with and without merging
handcrafted feature. The network hyper-parameter settings
are chosen based on the following criteria unless otherwise
specified. The maximum training iteration is set to be 20,000.
The batch size is set as 128, and the initial global learning rate
is set to be 0.0001. The margin parameter e in Eq.(12) is set
as 1.0. The value of � in Eq.(13) is set as 0.0001. Following
existing methods, we also normalize the training and testing
images to 256 by 256. For the converter and merger layer,
we multiply the local learning rate by 10. We multiply the
loss of auto-encoder by 0.01 if it is applied to the converters.
For α and β in Eq.(14), we explain how to choose their
values for different data sets in Section IV-B. All parameters
of convolutional layers of GoogLeNet are initialized from the
network pre-trained on the ImageNet ILSVRC [50] data set
and fine tuned in the training stage, the parameters of converter
and merger are initialized with random weights. It should be
noted that before the training or fine-tuning (for GoogLeNet)
step, the 4-RootHSV [35] features are computed in advance
for speeding up training.

IV. EXPERIMENTAL RESULTS

We conduct experiments on the CARS196 data set [51] (to
verify the hyper-parameter of β), the Stanford Online Products
data set [10], and the In-shop Clothes Retrieval data set [52]
for image retrieval and image clustering. For the person re-ID
task, experiments were conducted on the Market-1501 data
set [31] and the MARS data set [32]. For the vehicle re-ID
task, we use the VeRi-776 data set [34].
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The CARS196 data set has 196 classes with 16,185 images.
We split the first 98 classes with 8,054 images for training and
the remaining 98 classes with 8,131 images for testing.

The Stanford Online Products data set has 22,634 cate-
gories with 120,053 images. We split the first 11,318 classes
with 59,551 images for training, and the remaining
11,316 classes with 60,502 images for testing.

The In-shop Clothes Retrieval data set contains
7,982 classes of clothes with 52,712 images. We use the
first 3,997 classes with 25,882 images for training and the
remaining 3,985 classes with 26830 images for testing. The
test sets are split into the query set and gallery image set,
and a successful retrieval is counted when the gallery image
belongs to the same class as the query image.

The Market-1501 data set contains 1501 persons with
32668 labeled bounding boxes, and it is currently the largest
image-based person re-ID data set. Following the split method
in [31], the training set has 12,936 images with 751 persons,
and the testing set has 19,732 images with 750 persons. The
prob set contains 3,368 hand-drawn images with 750 persons
selected from the testing set. Based on the GoogLeNet, only
the single-query evaluation results are reported for this data
set in this paper.

The MARS data set is by far the largest video-based person
re-ID data set. It contains 1261 persons with 1,191,003 images
collected from 6 different cameras. As defined by [32],
the training set has 509,914 images with 625 persons, and the
testing set has 681,089 images with 636 persons. Unlike other
data sets, this data set is based on video sequences. The person
re-ID task is not a frame-to-frame query on this data set, but
a tracklet-to-tracklet query (namely, feature embeddings are
pooled across a tracklet).

The VeRi-776 data set consists of 776 vehicles with over
50,000 images. Following the split of [34], the training set
has 37,781 images with 576 vehicles, and the testing set
has 11,579 images with 200 vehicles. The prob set contains
1,678 query images selected from the testing set.

A. Performance Evaluation Metrics

For image retrieval, we use the standard mean average
precision (mAP) [53] and Recall@K [54] metrics to evaluate
the performance of various algorithms. The Recall@K first
computes K nearest neighbors of each query image from the
test set. In the K nearest neighbors, if one image of the same
class with the query image is obtained, the score is 1, otherwise
0. For image clustering, we use F1 and normalized mutual
information (NMI) [40] metrics. The F1 score computes the
harmonic mean of precision (P) and recall (R) (F1 = 2P R

P+R ).
For the NMI [40], the mutual information I (	,
) between
input clusters 	 and the ground truth classes 
 is computed.
Then, we compute the average entropy of clusters H (	) and
the entropy of ground truth clusters H (
). Finally, NMI is
computed by Eq.(15).

N M I (	,
) = 2I (	,
)

H (	) + H (
)
(15)

For person re-ID and vehicle re-ID, we use the standard
mean average precision score (mAP) [53] and the cumulative

TABLE I

THE MAPS ON THE CARS196 (CARS) DATA SET AND THE STANFORD
ONLINE PRODUCTS (SOP) DATA SET FOR DIFFERENT VALUES OF α

AND β IN EQ.(14) ACCORDING TO THE MODEL OF FIG. 1(A)

matching curve (CMC) at rank-1 as the proposed model
evaluation methods. We compute mAP and CMC scores with
and without re-ranking technology by using the evaluation
code provided by [55].

B. Multi-Loss Function Experiments

First, we need to determine the hyper-parameters α and β in
Eq.(14). We use the GoogLeNet to test our multi-loss function.
The test model is shown in Fig. 1(a), and the metric loss is
Lclass−metric. The dimension of feature embedding is set to
be 128. The fine-grained image data set CARS196 and the
Stanford Online Products are used in this experiment. On the
CARS196 data set, we test different values of α ranging from
0.1 to 0.9 with interval of 0.2, and the values of β are set to be
1 and 2, respectively. On the Stanford Online Products’ data
set, the same values of α are used, but the values of β are set
to be 1 and 10, respectively. The image retrieval results are
summarized in Table I.

From Table I, it can be seen that the best performance is
achieved when α = 0.1. The value of β should be set as a large
value for the general image data set and a small value for the
fine-grained image data set. For fine-grained image retrieval,
if β is too large, the network will be over-fitting (o-f). Thus,
in all subsequent experiments, we set α as 0.1, β = 10 for
general image retrieval and re-ID tasks.

Moreover, we also fine-tune and test the network with only
softmax loss and class-metric loss on these two data sets,
respectively. The final mAPs are 0.207 and 0.221 for the
CARS196 data set and 0.246 and 0.405 for the Stanford Online
Products data set. From Table I, we can see that when the
values of α and β are chosen appropriately, a higher mAP can
be obtained with the multi-loss function in Eq.(14).

C. General Image Retrieval Results

The Stanford Online Products’ data set and the In-shop
Clothes Retrieval data set are used to evaluate the perfor-
mances of our proposed feature embedding model for general
image retrieval. For the construct of 4-RootHSV, the number
of bins for H, S, V are 32, 4, 4, respectively. Thus, an HSV
histogram of size 512 can be obtained for each image. Then,
l1 normalization and fourth root scaling are applied to the
HSV histogram to obtain a 4-RootHSV [35] feature. For the
converter, the number of nodes is 512 for both GoogLeNet
and 4-RootHSV, and we design three types of converters in
this paper, i.e., ELM [45], [46], auto-encoder [44] and fully
connected (fc) network. For the feature embedding, we set the
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Fig. 4. Experimental results of baseline feature embedding and the proposed feature embedding with dimensions 64, 128, 256 and 512. On the Stanford
Online Products’ data set, (a) shows the results of mAP for image retrieval, (b) gives the average scores of Recall@1 for image retrieval, and (c) presents the
scores of F1 for image clustering. On the In-shop Clothes Retrieval data set, (d) shows the results of mAP for image retrieval, (e) gives the average scores
of Recall@1 for image retrieval, and (f) presents the scores of F1 for image clustering.

number of nodes as 64, 128, 256 and 512, respectively. The
experimental results with and without 4-RootHSV are shown
in Fig. 4.

Fig. 4(a) and Fig. 4(b) show the mAPs and Recall@1 on
the Stanford Online Products’ data set. Fig. 4(d) and Fig. 4(e)
show the mAPs and Recall@1 on the In-shop Clothes Retrieval
data set. In Fig. 4, the legends of softmax, class-metric
and softmax+class-metric representing only the GoogLeNet
without converter are used, but the legends of converter-
elm, converter-autoencoder and converter-fc representing the
GoogLeNet and 4-RootHSV with corresponding converters
are used, and the loss is the proposed multi-loss. From these
experiments, we can see that the mAP and Recall@1 results of
our proposed methods are much higher than those of the other
methods. Moreover, the mAPs retrieved with only 4-RootHSV
are 0.385 and 0.400 for the Stanford Online Products’ data
set and the In-shop Clothes Retrieval data set, respectively.
In addition, the Recall@1 with only 4-RootHSV is 0.606 and
0.793 for these two data sets, respectively.

For the proposed feature embedding model, as shown
in Fig. 4, the best converter is fc, followed by auto-encoder,
and ELM is the worst. This is consistent with the analysis
in Section III-C. At the same time, the performances of
converter-autoencoder and converter-fc are very close, but the
converter-fc is slightly better.

Fig. 5(a) and Fig. 5(b) show some query results on the
Stanford Online Products’ test data set and the In-shop Clothes
Retrieval test data set by using the 128 dimensional feature
embeddings obtained from the proposed model (converter-fc),

Fig. 5. (a) and (b) show some query results on the Stanford Online Products’
test data set and the In-shop Clothes Retrieval test data set by using the
128 dimensional feature embeddings obtained from the proposed model,
respectively.

respectively. In Fig. 5, the first column is the input query
images. Images marked with red rectangles are images that
match the query images according to the ground truths.

D. Image Clustering Results

For the image clustering task, we use the K-means clustering
algorithm to cluster the embedded features of the data set
into 11,316 classes and 3,985 classes for the Stanford Online
Products’ data set and the In-shop Clothes Retrieval data set,
respectively. The F1 scores are shown in Fig. 4(c) and Fig. 4(f),
and the NMI scores are listed in Table II.
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TABLE II

THE NMI SCORES ON THE STANFORD ONLINE PRODUCTS’ DATA SET AND THE IN-SHOP CLOTHES RETRIEVAL DATA SET

Fig. 6. (a) and (b) are the Barnes-Hut t-SNE visualizations of the Stanford
Online Products’ test data set and the In-shop Clothes Retrieval test data set
by using the 128 dimensional feature embeddings obtained from the proposed
model, respectively.

From Fig. 4(c), Fig. 4(f) and Table II, we can see that
the performances of multi-loss-based and Fusion-Net unit-
based methods are much better than single loss-based and
only CNN-based methods. In addition, the best converter is fc,
followed by the auto-encoder, and ELM is the worst converter
for image clustering.

Fig. 6(a) and Fig. 6(b) are the Barnes-Hut t-SNE [56]
visualizations of the Stanford Online Products’ test data set
and the In-shop Clothes Retrieval test data set by using the
128 dimensional feature embeddings obtained from the pro-
posed model (converter-fc), respectively. More visualization
results can be found on our project page or obtained by running
our code.1

E. Person Re-Identification Results

The Market-1501 data set and the MARS data set are used to
evaluate the proposed feature embedding model for the task of
person re-ID. Consistent with the settings in the general image
retrieval experiments (Section IV-C), the 512 dimensional
4-RootHSV [75] is used in this section, and the number
of nodes is 512 for the converter of both GoogLeNet and
4-RootHSV. For the MARS data set, because it is a
video-based data set, we take one frame every 16 frames
from the released training set as our final training set, so only
1/16 released training data of the MARS data set are used
to train our proposed model. During the testing phase, the re-
ranking [55] technique and Cross-view Quadratic Discrimi-
nant Analysis (XQDA) [57] metric are used in these two data

1https://github.com/kanshichao/Supervised-Deep-Feature-Embedding

sets. The parameters of re-ranking are set to be the same
as [55]. For the MARS data set test, the average pooling
is used for each tracklet for the feature embeddings. The
experimental results with and without 4-RootHSV are shown
in Fig. 7.

Fig. 7(a) and Fig. 7(b) show the mAPs and Recall@1 based
on the Euclidean metric on the Market-1501 data set, and
Fig. 7(c) shows the mAPs based on the XQDA metric on
this data set. Fig. 7(d) and Fig. 7(e) show the mAPs and
Recall@1 based on the Euclidean metric on the MARS data
set, and Fig. 7(f) shows the mAPs based on the XQDA
metric on the MARS data set. In Fig. 7, the legends of
softmax, class-metric and softmax+class-metric representing
only the GoogLeNet without converter, but the legends of the
converter-fc representing the GoogLeNet and 4-RootHSV with
corresponding converters, and the loss is also the proposed
multi-loss. The legends with re-ranking representing the re-
ranking [55] method are used.

For the Market-1501 data set, we can see from
Fig. 7(a)-7(c) that except for the Recall@1 of converter-fc and
softmax+class-metric+re-ranking in Fig. 7(b), from low to
high, the best performances of person re-ID are softmax, class-
metric, softmax+class-metric, converter-fc, softmax+class-
metric+re-ranking and converter-fc+re-ranking. These experi-
ments show that the feature embeddings trained by combining
multiple loss functions are better than the feature embed-
dings trained by a single loss function. At the same time,
the feature embeddings obtained by merging with 4-RootHSV
are also better than that of only CNN-based feature embed-
dings. In addition, the re-ranking step can greatly enhance
the performances of person re-ID based on our proposed
model. Furthermore, the results in Fig. 7(a)-7(c) by using only
4-RootHSV are 0.032, 0.1007 and 0.0432 without re-ranking.
This shows that the performance is significantly improved by
the proposed Fusion-Net unit.

For the MARS data set, according to Fig. 7(d)-7(f), the per-
formances obtained before and after merging with 4-RootHSV
are comparable to softmax+class-metric and converter-fc with
and without re-ranking, respectively. When the embedded
dimensions are 64 and 512, the performance of converter-fc is
slightly better than the performance of softmax+class-metric.
However, when the embedded dimensions are 128 and 256,
it is the opposite. In addition, the re-ranking step can greatly
enhance the performances for this video-based data set. Unlike
the previous conclusion, the loss of softmax on this data set
is better than the loss of class-metric. Moreover, the results
corresponding to Fig. 7(d)-7(f) using only 4-RootHSV are
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Fig. 7. Experimental results of baseline feature embedding and the proposed feature embedding with dimensions 64, 128, 256 and 512 with and without
re-ranking for person re-ID. On the Market-1501 data set, (a) shows the results of mAP (based on the Euclidean metric during the testing phase), (b) gives the
average scores of Recall@1 (based on the Euclidean metric during the testing phase), (c) presents the scores of mAP (based on the XQDA metric during the
testing phase). On the MARS data set, (d) shows the results of mAP (based on the Euclidean metric during the testing phase), (e) gives the average scores of
Recall@1 (based on the Euclidean metric during the testing phase), and (f) presents the scores of mAP (based on the XQDA metric during the testing phase).

0.0439, 0.1071 and 0.0459 without re-ranking for this data
set.

From Fig. 7(a) and Fig. 7(c), Fig. 7(d) and Fig. 7(f), we can
see that the mAPs of the XQDA metric and the mAPs of the
Euclidean metric are consistent for our feature embeddings.
Although the performances can be greatly improved by using
the XQDA metric for some features, the experimental results
show that the Euclidean metric is enough for the feature
embeddings of our proposed supervised feature embedding
model.

F. Vehicle Re-Identification Results

The VeRi-776 data set is used to evaluate the proposed
feature embedding model for the task of vehicle re-ID. The
network parameters are set as before (Section IV-C and IV-E).
The re-ranking [55] technique is also used in this data set.
The experimental results with and without merging with
4-Root-HSV are shown in Fig. 8. The meaning of legends
in Fig. 8 are the same as that in Fig. 7.

From Fig. 8, we can see that the results of softmax+class-
metric and converter-fc are much better than the results
of the softmax and class-metric. At the same time, from
Fig. 8(a) and Fig. 8(b), it can be seen that the re-ranking
step can boost the mAP and Recall@1 by a large margin,
but from Fig. 8(c), the conclusion is opposite for re-ranking.
Similar to Fig. 7(d)-7(f), the performances of converter-fc and
softmax+class-metric are comparable. This shows that the
4-RootHSV offers almost no help for this type of data set.

The results of mAP, Recall@1 and Recall@5 by using only
4-RootHSV are 0.0515, 0.1532 and 0.2414 without re-ranking
for this data set.

G. Comparison With the State-of-the-Art Methods

Because the results of image clustering are different with
different clustering algorithms, we compare our method with
the state-of-the-art methods in general image retrieval, person
re-ID and vehicle re-ID.

For general image retrieval, the results of Recall@K
of our methods and the state-of-the-art methods are listed
in Table III for the Stanford Online Products’ data set,
and Table IV for the In-shop Clothes Retrieval data set.
In Table III and Table IV, the superscripts of these methods
denote the dimensions of the embedded features. The results
of Softmax128, LiftedStruct128 [10], LiftedStruct512 [10] and
4-RootHSV512 [35] in Table IV are the experimental results
for the In-shop Clothes Retrieval data set by these
methods.

As we can see from Table III, except the methods of Facility
Location128 [12] and HDC+Contrastive384 [58], our methods
with dimensions of 128 and 512 are better than those of the
other methods. At the same time, using the converter-fc in
Fusion-Net unit, our experimental results are higher than those
of the state-of-the-art methods, 2.5% higher and 4.8% higher
than the methods of Facility Location128 [12], 1% higher and
2.3% higher than the methods of HDC+Contrastive384 [58]
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Fig. 8. Experimental results of baseline feature embedding and the proposed feature embedding with dimensions 64, 128, 256 and 512 with and without
re-ranking for vehicle re-ID. Based on the Euclidean metric during the testing phase on the VeRi-776 data set, (a) shows the results of mAP, (b) gives the
average scores of Recall@1, and (c) presents the scores of Recall@5.

TABLE III

SCORES OF RECALL@K(%) ON THE STANFORD
ONLINE PRODUCTS’ DATA SET

TABLE IV

SCORES OF RECALL@K(%) ON THE IN-SHOP

CLOTHES RETRIEVAL DATA SET

with Recall@1 metric using Converter-fc128 and Converter-
fc512, respectively.

According to Table IV, except Recall@1 for
Softmax+class-metric128 and Converter-elm128, the experi-
mental results of our methods are also better than the

TABLE V

COMPARISON OF THE PROPOSED MODEL WITH THE STATE-OF-THE-ART
ON THE MARKET-1501 DATA SET

state-of-the-art results and 3% higher and 3.1% higher than
4-RootHSV512 with Recall@1 metric for Converter-fc128 and
Converter-fc512, respectively.

The results for person re-ID, Recall@1 and mAPs of our
methods and the results of state-of-the-art methods are listed
in Table V for the Market-1501 [31] data set and Table VI
displays those for the MARS [32] data set. In Table V
and Table VI, (R) represents ResNet-50 and (G) represents
GoogLeNet. For our methods, the superscripts of these meth-
ods denote the dimensions of the embedded features.

From Table V and Table VI, we can see that the best result
is obtained by the model trained with the ResNet-50, but
our supervised feature embedding model (GoogLeNet-based)
also obtain a competitive result, which exceeds all the results
except [48]. However, the methods of [48] are based on the
ResNet-50, with an improved loss function and hard example
mining, all of these can be used in our model to further
improve the performance.

Table VII lists the results of vehicle Re-ID results on
the VeRi-776 data set. It can be seen that the method
of Softmax+class-metric256 (G) obtains the best Recall@5,
which is higher than the previous state-of-the-art result
of 3.46%. And the method of Softmax+class-metric256 (G) +
Re obtains the best mAP and Recall@1, which are higher than
the previous state-of-the-art 4.13% and 3.82%, respectively.
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TABLE VI

COMPARISON OF THE PROPOSED MODEL WITH THE STATE-OF-THE-ART
ON THE MARS DATA SET

TABLE VII

COMPARISON OF THE PROPOSED MODEL WITH THE STATE-OF-THE-ART

ON THE VERI-776 DATA SET

Moreover, most of our experimental results are higher than
the previous state-of-the-art results.

H. Discussions

As shown in Fig. 4, in supervised deep feature embedding
with a handcrafted feature model, the performance improve-
ment is primarily from the combination of class-metric loss
and softmax loss (the light blue curve in Fig. 4) and merges
with the 4-RootHSV feature (the red curve in Fig. 4). In our
experiments, the information of the 4-RootHSV feature is
embedded into GoogLeNet. However, the features to be
embedded are not limited to HSV, and the network is also
not limited to GoogLeNet.

From the perspective of feature embedding, solving the
unknown parameters of Eq.(8) according to minimize Eq.(3)
and Eq.(12), the deep learning method has achieved good
results on some data sets based on the GoogLeNet and 4-
RootHSV feature. A comparison of Eq.(3) and Eq.(12) shows
that they are different. Eq.(12) is suitable for solving parame-
ters with deep learning methods. However, Eq.(3) is suitable
for solving parameters with machine learning methods. It is
also important to explore machine learning solutions in the
future.

In addition, the proposed model can be seen as fusing deeply
learned features and handcrafted features by deep feature
embedding. Thus, it can be used to the feature fusion area.

V. CONCLUSIONS

In this paper, we developed a model of supervised deep
feature embedding with handcrafted feature, which merges 4-
RootHSV and combines deep feature embedding, deep metric
learning and multi-loss function optimization into a unified
framework, and achieves end-to-end learning. In the proposed
model, we introduce the idea of the converter to regulate
different input representations. Experimental results on the
Stanford Online Products’ data set and the In-shop Clothes
Retrieval data set demonstrate that the proposed methods
outperform existing state-of-the-art methods in terms of gen-
eral image retrieval. In particular, with the converter of the
fully connected network, the performances of supervised deep
feature embedding with the handcrafted feature model can
boost the state-of-the-art results by a large margin. Other
experimental results on the Market-1501 data set, the MARS
data set and the VeRi-776 data set showed the effectiveness
of the proposed methods for person re-ID and vehicle re-ID
tasks.

In addition, the proposed supervised deep feature embed-
ding with the handcrafted feature model can also be used for
video, text, and speech representation with other CNNs or
handcrafted features.

APPENDIX

THE BACK PROPAGATION GRADIENTS OF CLASS-METRIC

LOSS FOR THE INPUT FEATURE EMBEDDINGS

The class-metric loss function is defined as Eq.(12). Accord-
ing to the function-derived chain rules, for the positive pairs
(i, j) and negative pairs (i, l) and ( j, l), the corresponding
derivatives are as follows (for convenience, we will use
Di, j instead of DW1,W2,M(i, j), and use Dk,l instead of
DW1,W2,M(k, l) in the following derivations):

• Positive pairs (i, j):

∂ Q

∂ f (xi )
= ∂ Q

∂Di, j

∂Di, j

∂ f (xi )
+ ∂ Q

∂ pi

∂ pi

∂ f (xi)
(16)

∂ Q

∂ f (x j )
= ∂ Q

∂Di, j

∂Di, j

∂ f (x j )
+ ∂ Q

∂ p j

∂ p j

∂ f (x j )
(17)

∂ Q

∂Di, j
= (2 + pi + p j )

2|P | �Qi, j I[�Qi, j > 0] (18)

∂ Q

∂ pi
= 1

2|P | �Qi, j I[�Qi, j > 0] �Di, j + β1
�

(19)

∂ Q

∂ p j
= 1

2|P | �Qi, j I[�Qi, j > 0] �Di, j + β2
�

(20)

β1 =
�

(i,l)∈N ex p{e − Di,l }
ex p{�Qi, j − (2+pi+p j )

2 Di, j }
(21)

β2 =
�

( j,l)∈N ex p{e − D j,l}
ex p{�Qi, j − (2+pi+p j )

2 Di, j }
(22)
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• Negative pairs (i, l):

∂ Q

∂ f (xi )
= ∂ Q

∂Di,l

∂Di,l

∂ f (xi )
+ ∂ Q

∂ pi

∂ pi

∂ f (xi )
(23)

∂ Q

∂ f (xl)
= ∂ Q

∂Di,l

∂Di,l

∂ f (xl)
+ ∂ Q

∂ pl

∂ pl

∂ f (xl)
(24)

∂ Q

∂Di,l
= (2 + pi + pl)

2|P | �Qi, j I[�Qi, j > 0]σ1 (25)

σ1 = −ex p{e − Di,l }
ex p{�Qi, j − (2+pi+p j )

2 Di, j }
(26)

∂ Q

∂ pl
= 1

2|P | �Qi, j I[�Qi, j > 0] [β1 + β2] (27)

• Negative pairs ( j, l):

∂ Q

∂ f (x j )
= ∂ Q

∂D j,l

∂D j,l

∂ f (x j )
+ ∂ Q

∂ p j

∂ p j

∂ f (x j )
(28)

∂ Q

∂ f (xl)
= ∂ Q

∂D j,l

∂D j,l

∂ f (xl)
+ ∂ Q

∂ pl

∂ pl

∂ f (xl)
(29)

∂ Q

∂D j,l
= (2 + p j + pl)

2|P | �Qi, j I[�Qi, j > 0]σ2 (30)

σ2 = −ex p{e − D j,l}
ex p{�Qi, j − (2+pi+p j )

2 Di, j }
(31)

In these functions, I[·] is the indicator function that outputs
1 if the value of the expression is true and outputs 0 otherwise.
The remaining derivatives are obvious.
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